ANSWERSAND EXPLANATIONS

EXERCISE

1. (d) Product of numbers $=\mathrm{HCF} \times \mathrm{LCM}$
\Rightarrow The other number $=\frac{4800 \times 160}{480}=1600$
2. (c) Let the numbers be $7 x$ and $8 x$.
\Rightarrow Their $\mathrm{HCF}=\mathrm{x}$
Now, LCM \times HCF $=$ Product of Numbers
i.e. $280 \times x=56 x^{2}$ or $x=5$

Hence, the numbers are 35 and 40.
3. (c) Required distance $=$ L.C.M of $\left(\frac{12}{5}, \frac{24}{7}\right)$
$=\frac{\text { L.C.M. } o f(12,24)}{\text { H.C.F.of }(5,7)}=\frac{24}{1} \mathrm{~m}$
Hence, carriage will travelled 24 m so that its chalk marks may be again on the ground at the same time.
4. (b) Required no. $=\operatorname{LCM}$ of $(8,11,24)-5=264-$ $5=259$
5. (d) Suppose least no. be x
$1856-\mathrm{x}=\mathrm{n}($ LCM of $7,12,16)+4$
or $1856-\mathrm{x}=\mathrm{n}(336)+4$
we should take $n=5$ so that $n(336)$ is nearest to 1856 and $\mathrm{n}(336)<1856$
$1856-\mathrm{x}=1680+4=1684$
$\mathrm{x}=1856-1684=172$
6. (b) Required number
$=$ H.C.F of $(148-4),(246-6)$ and $(623-11)$
$=$ H.C.F of 144,240 and $612=12$
7. (b) L.C.M of $18,24 \& 32=288$

Hence they would chime after every 288 min . or 4 hrs 48 min
8. (c) Let the numbers be x and $4 x$.

Then, $84 \times 21=\mathrm{x} \times 4 \mathrm{x}$
or $4 x^{2}=1764$
or $\quad x^{2}=441 \quad$ or $\quad x=21$
$\Rightarrow 4 \mathrm{x}=4 \times 21=84$

Thus the larger number $=84$
9. (b) \because Product of numbers $=(\mathrm{LCM} \times \mathrm{HCF})$
$\Rightarrow 480 \times$ second number $=2400 \times 16$
\Rightarrow second number $=80$
10. (b) Let the third number be x.

Product of numbers $=\mathrm{LCM} \times \mathrm{HCF}$
Therefore, $3240 \times 3600 \times x=36 \times 2^{4} \times 3^{5} \times 5^{2} \times 7^{2}$
$\Rightarrow \quad \mathrm{x}=\frac{36 \times 2^{4} \times 3^{5} \times 5^{2} \times 7^{2}}{\left(2^{3} \times 3^{4} \times 5\right) \times\left(2^{4} \times 3^{2} \times 5^{2}\right)}$
or $x=\frac{\left(2^{2} \times 3^{2}\right) \times 2^{4} \times 3^{5} \times 5^{2} \times 7^{2}}{2^{3} \times 3^{4} \times 5 \times 2^{4} \times 3^{2} \times 5^{2}}$
or $\quad x=\frac{2^{6} \times 3^{7} \times 5^{2} \times 7^{2}}{2^{7} \times 3^{6} \times 5^{3}}=2^{2} \times 3^{5} \times 7^{2}$
11. (d) Required number $=$ HCF of 429 and $715=143$
12. (b) Required number
$=\mathrm{HCF}$ of $(115-3),(149-5)$ and $(183-7)$
$=\mathrm{HCF}$ of 112,144 and $176=16$
13. (d) Required number $=3000-\mathrm{LCM}$ of $7,11,13$
$=3000-1001=1999$
14. (c) Let numbers be x and y.
\because Product of two numbers $=$ their $(\mathrm{LCM} \times \mathrm{HCF})$
$\Rightarrow x y=630 \times 9$
Also, $x+y=153$ (given)
since $x-y==\sqrt{(x+y)^{2}-4 x y}$
$\Rightarrow \mathrm{x}-\mathrm{y}=\sqrt{(153)^{2}-4(630 \times 9)}$
$=\sqrt{23409-22680}=\sqrt{729}=27$
15. (b) H.C.F of co-prime numbers is 1 .

So, L.C.M. $=117 / 1=117$.
16. (c) L.C.M. of 5, 6, 4 and $3=60$. On dividing 2497 by 60 , the remainder is 37 .
\therefore Number to be added $=(60-37)=23$.
17. (c) First number $=(50 \times 2)=100$. Second number $=\left(\frac{50 \times 250}{100}\right)=125$.
18. (c) Let the numbers be x and $(2000-\mathrm{x})$. Then, their L.C.M. $=x(2000-x)$.

So, $x(2000-x)=21879$
$\Rightarrow x^{2}-2000 x+21879=0$
$\Rightarrow(\mathrm{x}-1989)(\mathrm{x}-11)=0$
$\Rightarrow \mathrm{x}=1989$ or 11 .
Hence, the numbers are 1989 and 11.
19. (d) H.C.F. of two numbers divides their L.C.M. exactly. 8 is not a factor of 60 .
20. (d) Since H.C.F. is always a factor of L.C.M., we cannot have three numbers with H.C.F. 35 and L.C.M. 120.
21. (a) L.C.M. of $8,16,40$ and $80=80$.
$\frac{7}{8}=\frac{70}{80} ; \frac{13}{16}=\frac{65}{80} ; \frac{31}{40}=\frac{62}{80}$.
Since, $\frac{70}{80}>\frac{65}{80}>\frac{63}{80}>\frac{62}{80}$, so $\frac{7}{8}>\frac{13}{16}>\frac{63}{80}>\frac{31}{40}$.
So, $\frac{7}{8}$ is the largest.
22. (d) Least number of 5 digits is 10,000 L.C.M. of 12 , 15 and 18 is 180.

On dividing 10000 by 180 , the remainder is 100 .
\therefore Required number
$=10000+(180-100)=10080$.
23. (c) Greatest number of 4 digits is 9999. L.C.M. of $15,25,40$ and 75 is 600.

On dividing 9999 by 600 , the remainder is 399 .
\therefore Required number $=(9999-399)=9600$.
24. (c) Required time $=\mathrm{LCM}$ of 48,64 and 72

2	48,	64,	72
2	24,	32,	36
2	12,	16,	18
2	6,	8,	9
3	3,	4,	9
	1,	4,	3

LCM $=2 \times 2 \times 2 \times 2 \times 3 \times 4 \times 3=576$ seconds.
25. (b) Required time
$=$ L.C.M of 24, 36 and 48
$=144$ seconds
$=2$ minutes 24 seconds
26. (b) Required time $=$ L.C.M of 24,36 and 30

$$
=360 \text { seconds }=6 \text { minutes }
$$

27. (c) They will be together at the starting point after the
L.C.M of 36,48 and 42
L.C.M. of $36,48,42=1008$ seconds
28. (c) LCM of 3 and $5=15$
$\therefore \frac{300}{15}=20$ numbers
