ANSWERSAND EXPLANATIONS

EXERCISE 1

1. (e) In 60 gms mixture proportion of water
$=60 \quad \frac{75}{100}=45 \mathrm{gms}$
Total proportion of water in new mixture
$=45+15=60 \mathrm{gms}$.
$\therefore \quad$ Percentage of water
$=\frac{60}{\mathbf{6 0} \quad 15} \quad 100=80 \%$
2. (b) By the rule of alligation, water concentration,

\therefore water must be added to the mixture in the ratio
$\frac{14}{143}: \frac{7}{13}$ i.e. $2: 11$
Quantity of water to be added $=\frac{2}{11} \times 55=10$ litres
3. (c)

Gold

Copper

Type A 14
$\begin{array}{lll}\text { Type B } & 71\end{array}$
Type C $21 \quad 15$
\therefore The ratio of the Gold and Copper in the type C alloy $=7: 5$.
4. (b) The first type of alloy does not contain tin. Second type alloy contains tin. Therefore, quantity of tin in 2 units of the resulting alloy $=\frac{5}{13}$
\Rightarrow Quantity of tin in 1 unit of the resulting alloy
$=\frac{\frac{5}{13}}{2}=\frac{5}{26}$
5. (d) Let the capacity of the jar be of x bottles.
since 6 bottles were taken out from jar and 4 bottles of oil poured into it $\therefore 2$ gottles were
taken out
Therefore, we have

$$
\begin{aligned}
& \Rightarrow \frac{4}{5} x-2=\frac{3}{4} x \\
& \Rightarrow \quad \frac{4}{5} x-\frac{3}{4} x=2 \quad \Rightarrow \quad x=40
\end{aligned}
$$

6. (c) Let the quantity of milk and water be 40 litres and 60 litres, respectively.
$(\because$ Ratio of milk to water $=2: 3)$
After removing 50% of solution
Quantity of milk $=20$ litres and
Quantity of water $=30$ litres
Therefore, the concentration of the solution is reduced from 40 to 20 i.e. a reduction of 50%.
7. (c) Let the third type of tea is priced at Rs x per kg . Also suppose that the three types of tea mixed together are 1,1 and 2 kg ,respectively.

Now, $\begin{array}{llllll}126 & 1 & 135 & 1 & 2 \mathrm{x} \\ \begin{array}{lllll}1 & 1 & 2 & & \end{array} 53\end{array}$
$\Rightarrow \quad \frac{261+2 \mathrm{x}}{4}=153 \quad \Rightarrow \quad 261+2 \mathrm{x}=612$
$\Rightarrow \quad \mathrm{x}=\frac{351}{2}=$ Rs 175.5 per kg .
8. (b) Quantity of milk $=\frac{3}{5} \times 45=27$ litres

Quantity of water $=\frac{2}{5} \times 45=18$ litres
Let x litres of water be added to make the ratio $9: 11$.

$$
\therefore \quad \frac{18+\mathrm{x}}{27}=\frac{11}{9} \Rightarrow 18+\mathrm{x}=33 \Rightarrow \mathrm{x}=15 l
$$

9. (b) Let the no. of one rupee, 50 paise and 25 paise coins be $2 \mathrm{x}, 3 \mathrm{x}$ and 4 x respectively.
According to question,
Rs. $2 \mathrm{x} \quad \frac{3 \mathrm{x}}{2} \quad \frac{4 \mathrm{x}}{4}$
Rs. 216

$$
\frac{8 x \quad 6 x \quad 4 x}{4} \quad 216
$$

$$
\therefore \quad \mathrm{x}=48
$$

$\therefore \quad$ Number of 50 paise coins $=48 \times 3=144$
10．（c）Quantity of milk $=45 \times \frac{4}{5}=36$ litres
Quantity of water $=45 \times \frac{1}{5}=9$ litres
Let x litres of water be added to make the ratio 3：2

Then，$\frac{36}{9+\mathrm{x}}=\frac{3}{2}$
$\Rightarrow \quad 72=27+3 x \Rightarrow \quad x=15$ litres
11．（b）

	Water	Milk	Total．
1st vessel	6	7	13
2nd vessel	5	9	14
3rd vessel	8	7	15

LCM of $13,14 \& 15=2730$
Increase value of total to 2730 as follows．

1st vessel	1260	1470	2730
2nd vessel	975	1755	2730
3rd vessel	1456	1274	2730
Total	3691	4499	8190

\therefore Required ratio $=\frac{3691}{4499}$
Alternate method is dividing options by 13,14 \＆ 15.

12．（d）Tonic $=30$ litres，Water $=10$ litres
Let x litres of water be added，then $\frac{10}{40} \quad \mathrm{x} \quad \frac{2}{7}$
$\Rightarrow 70+7 x=80+2 x \Rightarrow 5 x=10 \Rightarrow x=2$ litres．
13．（c）Let the weight of tea worth $₹ 25$ per $\mathrm{kg}=\mathrm{xkg}$ ．
According to question
$\therefore 110 \%$ of $\left[\frac{\mathrm{x} \times 25+30 \times 30}{\mathrm{x}+30}\right]=30$
$\Rightarrow \frac{110}{100}\left[\frac{25 \mathrm{x}+900}{\mathrm{x}+30}\right]=30$
$\Rightarrow 11(25 \mathrm{x}+900)=300(\mathrm{x}+30)$
$\Rightarrow 275 \mathrm{x}+9900=300 \mathrm{x}+9000$ or $25 \mathrm{x}=900$
$\therefore \mathrm{x}=36 \mathrm{~kg}$ ．
14．（b）Let，weight of sugar costing ₹ 5.75 per $\mathrm{kg}=\mathrm{x} \mathrm{kg}$
$\mathrm{x} \times 5.75+75 \times 4.50=5.50 \times(\mathrm{x}+75)$
$\Rightarrow 5.75 \mathrm{x}+337.50=5.50 \mathrm{x}+412.50$
$\Rightarrow 0.25 \mathrm{x}=75$
$\therefore \mathrm{x}=300 \mathrm{~kg}$
15．（b）Let x and y be two containers．

Ratio of milk to water in container $\mathrm{x}=5: 1$
and ratio of milk to water in container $y=7: 2$
It is given that quantity of milk should be 80% in new mixture．This means that quantity of water will be 20%
that quantity of water will be 20%
\therefore Ratio of milk to water in new mixture $=80: 20$
$=4: 1$ ．
$\therefore \frac{5}{6} \mathrm{x} \quad \frac{7}{9} \mathrm{y}: \frac{1}{6} \mathrm{x} \quad \frac{2 \mathrm{y}}{9} \quad 4: 1$

$$
\begin{array}{l|l}
\frac{5 x}{6} & \frac{7 y}{9} \\
\frac{x}{6} & \frac{2 y}{9}
\end{array} \frac{4}{1}
$$

$$
\begin{array}{lllllll}
\frac{15 \mathrm{x}}{3} \quad 14 \mathrm{y} \\
3 \mathrm{x} & 4 \mathrm{y} & \frac{4}{1} & 15 \mathrm{x} & 14 \mathrm{y} & 12 \mathrm{x} & 16 \mathrm{y}
\end{array}
$$

$$
3 x \quad 2 y \quad x: y \quad 2: 3
$$

16．（c）

\therefore Required ratio $=20: 4=5: 1$
Number of passed candidates

$$
\frac{5}{5 \quad 1} 120 \quad 100
$$

17．（b）If spirit is sold at CP ，there is $\%$ gain but if water is sold at CP，there is 100% gain．
Using the method of alligation，

Ratio of spirit to water in the mixture should be $80: 20=4: 1$
\therefore Proportion of water in the mixture
$\frac{1}{1+4}=\frac{1}{5}=1: 5$
18. (a) $\mathrm{CP}=25 \times 16.50+35 \times 24.50=₹ 1270$
$\mathrm{SP}=1270 \times \frac{125}{100}=₹ 1587.50$
Price per $\mathrm{kg}=\frac{1587.50}{60} \quad 26.50$
19. (a) In 1 kg mixture quantity of iron $=200 \mathrm{gm}$

Let x gm sand should be added, then
10% of $(1000+x)=200$
$\therefore \quad x=1000 \mathrm{gm}=1 \mathrm{~kg}$

EXERCISE 2

1. (b) By the rule of alligation, we have

\therefore Required ratio $=\frac{6}{4}=3: 2$
2. (c) $\%$ alcoholic strength in mixture

$$
\begin{array}{rrrrr}
6 & 20 & 4 & 60 & 36
\end{array}
$$

3. (a) $\frac{\text { Quantity lent at } 8 \%}{\text { Quantity lent at } 10 \%}=\frac{10-9.2}{9.2-8}=\frac{0.8}{1.2}=\frac{2}{3}$
\therefore Quantity of money lent at 8%

$$
=\frac{2}{2+3} \times 1000=\operatorname{Rs} 400
$$

and quantity of money lent at 10%

$$
=\frac{3}{2+3} \times 1000=\text { Rs } 600
$$

4. (c) C.P. of 1 litre of milk $=$ Rs. $\left(20 \times \frac{2}{3}\right)=$ Rs. $\frac{40}{3}$.

$$
\begin{aligned}
& \begin{array}{l}
\text { C.P. of } 1 \text { litre } \\
\text { of water }
\end{array}\left(\frac{40}{3}-\frac{32}{3}\right)=\frac{8}{3} \quad \begin{array}{c}
\text { C.P. of } 1 \text { litre } \\
\text { of milk }
\end{array} \\
& \left(\frac{32}{3}-0\right)=\frac{32}{3}
\end{aligned}
$$

$\therefore \quad$ Ratio of water and milk $=\frac{8}{3}: \frac{32}{3}=8: 32=$
1: 4 .
$\therefore \quad$ Quantity of water to be added to 60 litres of milk $=\left(\frac{1}{4} \times 60\right)$ litres $=15$ litres.
5. (c) Here, cost price of mixture
$=40 \times \frac{100}{100+25}=32$ paise
$\therefore \frac{\mathrm{q}_{1}}{\mathrm{q}_{2}}=\frac{32-24}{42-32}=\frac{8}{10}=\frac{4}{5}$
and hence $\mathrm{q}_{1}=\frac{4}{5} \times 25=20 \mathrm{~kg}$
6. (b) By the rule of alligation, we have

7. (b) In mixture,
$\frac{\text { Quantity of pure milk }}{\text { Quantity of water }}=\frac{3-0}{3.6-3}=\frac{3}{0.6}=\frac{5}{1}$
Since in every 5 litres of milk, he adds 1 litre of water.
\therefore In every 25 litres of milk, he adds 5 litres of water.
8. (d) The given solution has 50% alcohol. Water which is to be added has 0% alcohol concentration.
Alcohol concentration :

\therefore Water should be added in the ratio 2:3
\therefore Quantity of water to be added $=\frac{2}{3} \times 9=6 \mathrm{ml}$
9. (d) Petrol Petrol
A
B
I: A 0
II: $\frac{\mathrm{A}}{2}$ $\frac{B}{2}$
III: $\frac{\mathrm{A}}{4}+\frac{\mathrm{A}}{2}$
$\frac{B}{4}$
IV: $\frac{\mathrm{A}}{8}+\frac{\mathrm{A}}{4}$
$\frac{B}{8}+\frac{B}{2}$

Now, amount of petrol $A=\frac{A}{4}+\frac{A}{8}=\frac{3 A}{8}$
$\therefore \quad$ required $\%=\frac{3 \mathrm{~A}}{8 \times \mathrm{A}} \times 100=37.50 \%$
10. (d) $\%$ of glycerine in new mixture
$=\frac{\text { Original } \% \text { of glycerine }}{\text { mixture weight }+ \text { water added }} \times 100$

$$
=\frac{35}{100+25} \times 100=28 \%
$$

11. (c) Suppose the cane initially contains 7 x and 5 x litres of mixtures A and B respectively.
Quantity of A in mixture left
$=\left(7 x-\frac{7}{12} \times 9\right)$ litres $=\left(7 x-\frac{21}{4}\right)$ litres.
Quantity of B in mixture left
$=\left(5 x-\frac{5}{12} \times 9\right)$ litres $=\left(5 x-\frac{15}{4}\right)$ litres.
$\therefore \frac{\left(7 x-\frac{21}{4}\right)}{\left(5 x-\frac{15}{4}\right)+9}=\frac{7}{9} \Rightarrow \frac{28 x-21}{20 x+21}=\frac{7}{9}$
$\Rightarrow 252 \mathrm{x}-189=140 \mathrm{x}+147$
$\Rightarrow 112 \mathrm{x}=336 \Rightarrow \mathrm{x}=3$.
So, the cane contained 21 litres of A.
12. (c) C. P. of mixture of $18 \mathrm{~kg}=10 \times 45+8 \times 50=\mathrm{Rs}$ 850
\therefore S. P. $=$ C. P. + Profit $=850+32=$ Rs 882
\therefore S. P. $=$ Rs 882 for 18 kg
\therefore S. P. for $1 \mathrm{~kg} . \quad \mathrm{Rs} \frac{882}{18}=\operatorname{Rs} 49$
13. (b) Here, S. P. of mixture $=$ C. P. of pure milk $=$ Rs 3 per litre
Now, S. P. of mixture
$=\frac{100+20}{100} \times$ C.P. of mixture
\Rightarrow C.P. of mixture $=\frac{3 \times 100}{120}=$ Rs 2.5 per litre

Also, C. P of water $=$ Rs 0
By the rule of alligation :
C.P. of pure milk
Rs 3 C.P. of water

$\therefore \quad$ Ratio of pure milk and water in mixture $=$
$\frac{2.5}{0.5}=5: 1$
For five litres of water, quantity of pure milk

$$
=5 \times 5=25 \text { litres }
$$

14. (b) $\because 10$ litres are withdrawn $=\frac{10}{50}=\frac{1}{5}$ of the whole Quantity of milk after 2nd operation

$$
\begin{aligned}
& =50\left(1-\frac{1}{5}\right)^{2} \\
& =\frac{16}{25} \times 50=32 \text { litres }
\end{aligned}
$$

15. (c) Let capacity of the vessel be x litres.

Therefore, $\frac{x-4}{4}=\frac{1}{2}$
$\therefore \mathrm{x}=6$
16. (b) Alcohol in 1st glass $=\frac{2}{3}$; water in 1st glass $=\frac{1}{3}$

Alcohol in 2nd glass $=\frac{1}{2} ;$ water in 2nd glass $=\frac{1}{2}$
\therefore In 3rd glass,
Alcohol $=\frac{2}{3}+\frac{1}{2}=\frac{7}{6} ;$ water $=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}$
\therefore Required ratio $=\frac{7}{6}: \frac{5}{6}=7: 5$
17. (d) Fineness $=\frac{6 \times 15+5 \times 14+4 \times \frac{25}{2}}{6+5+4}$
$=\frac{210}{15}=14$ carats
18. (a) C.P. of the mixture $=\frac{44 \times 100}{110}=$ Rs. 40 per kg

Using alligation rule, the required ratio

If $3 \rightarrow 36 \mathrm{~kg}$
Then $1 \rightarrow$?

$$
=\frac{1 \times 36}{3}=12 \mathrm{~kg} .
$$

19. (a) By alligation rule

$\therefore \quad$ The ratio in which the two are to be mixed is
$\frac{1}{40}: \frac{1}{24}=3: 5$
20. (c) Let a container contains x units of liquid and y units of liquid is taken out from it. If this operation is repeated n times, then the final quantity of the liquid in the container is $x\left(1-\frac{y}{x}\right)^{n}$.
\therefore From this equation, we have
$24=54\left(1-\frac{\mathrm{y}}{54}\right)^{2}$
($y=$ amount of acid initially drawn off)
$\Rightarrow\left(1-\frac{y}{54}\right)^{2}=\frac{24}{54}=\frac{4}{9}$
$\Rightarrow\left(1-\frac{\mathrm{y}}{54}\right)=\frac{2}{3} \Rightarrow \frac{y}{54}=\frac{1}{3} \Rightarrow \mathrm{y}=18$ litres
21. (d) Let x litres of 37.85% alcoholic solution and $(35-x)$ litres of 92% alcoholic solution are required to get 35 litres of 89% solution. Thus,
we have $\frac{37.85}{100} x \frac{92}{100}\left(\begin{array}{ll}35 & x)\end{array} \frac{89}{100} 35\right.$

$$
x \quad \frac{105}{54.15} \quad 1.94
$$

$\therefore \quad 1.94$ litres of Ist solution and 33.06 litres of IInd solution should be there in the new mixture.
22. (d) Let the weight of the filled bottle be 100 g . Then, the weight of the empty bottle is 20 g .
Let x gm liquid removed
Now, $100-\mathrm{x}=\frac{100}{2} \Rightarrow \mathrm{x}=50$
Required ratio $=\frac{50}{100}=\frac{1}{2}$
23. (c) Ratio of milk in the containers are,
$5 \times \frac{1}{6}: 4 \times \frac{3}{8}: 5 \times \frac{5}{12}=\frac{5}{6}: \frac{3}{2}: \frac{25}{12}$
and the ratio of water in the containers are,
$5 \times \frac{5}{6}: 4 \times \frac{5}{8}: 5 \times \frac{7}{12}=\frac{25}{6}: \frac{5}{2}: \frac{35}{12}$
Ratio of mixture of milk and water in the containers
$=\left(\frac{1}{6} \times 5+\frac{3}{8} \times 4+\frac{5}{12} \times 5\right):\left(\frac{5}{6} \times 5+\frac{5}{8} \times 4+\frac{7}{12} \times 5\right)$
$=106: 230=53: 115$
24. (a) 10% of 10 litre is 1 litre.

Nitric Acid Water
1 ltr. 9 ltr.
1 ltr. is 4% of 25 litre. So final solution will have Nitric Acid Water

1 ltr. 24 ltr.
Hence 15 litres of water needs to be added.
25. (a)

	Iron		Copper	
Alloy I	8	$:$	6	14 kg.
Alloy II	36	$:$	6	42 kg.
	44	$:$	12	56 kg

EXERCISE 3

1. (c) C.P. of mixture $=\frac{80 \times 15+20 \times 20}{80+20}=$ Rs 16
\therefore S.P. $=\frac{(100+25)}{100} \times 16=\operatorname{Rs} 20$
2. (c) Let the quantity of two varieties of tea be 5 x kg and 4 x kg , respectively.
Now, $\mathrm{SP}=23 \times 9 \mathrm{x}=207 \mathrm{x}$
and $C P=20 \times 5 \mathrm{x}+25 \times 4 \mathrm{x}=200 \mathrm{x}$
Profit $\%=\frac{7 \mathrm{x}}{200 \mathrm{x}} \times 100=3.5 \%$
3. (b) Let C.P. of milk be Re. 1 per litre.

Then, S.P. of 1 litre of mixture $=$ Re. 1.
Gain $=20 \%$
$\therefore \quad$ C.P. of 1 litre of mixture $=$ Rs. $\left(\frac{100}{120} \times 1\right)=\operatorname{Re} . \frac{5}{6}$.
By the rule of alligation, we have :

\therefore Ratio of water and milk $=\frac{1}{6}: \frac{5}{6}=1: 5$.
4. (d) C.P. of mixture $=\frac{100}{100+10} \times 11=$ Rs 10

Let the cost of second liquid be Rs x .
Then, cost of first liquid be Rs ($x+2$).
$\therefore \quad 10=\frac{(\mathrm{x}+2) \times 3+2 \mathrm{x}}{5}$
$\Rightarrow 5 \mathrm{x}+6=50 \stackrel{5}{\Rightarrow} \mathrm{x}=$ Rs 8.8
\therefore cost of first liquid $=$ Rs $(8.8+2)=$ Rs 10.80
5. (b) Let x gallons of first mixture be mixed with y gallons of second mixture.

	Milk	Water
x gallons (1st)	$\frac{8}{9} \mathrm{x}$	$\frac{1}{9} \mathrm{x}$
y gallons (2nd)	$\frac{1}{6} \mathrm{y}$	$\frac{5}{6} \mathrm{y}$
Third vessel	$\frac{8}{9} \mathrm{x}$	$\frac{1}{6} \mathrm{y}$

Since the third vessel contains half milk and half water,
$\frac{8}{9} x \quad \frac{1}{6} y \quad \frac{1}{9} x \quad \frac{5}{6} y \Rightarrow 16 x+3 y=2 x+15 y$
$\Rightarrow 16 x-2 x=15 y-3 y \quad \frac{x}{y} \quad \frac{12}{14} \quad \frac{6}{7}$.

Hence $y=\frac{7}{13} \times 26=14$ gallons
6. (a) Let C.P. of 1 litre milk be Re. 1.
S.P. of 1 litre of mixture $=$ Re. 1, Gain $=\frac{50}{3} \%$.
$\therefore \quad$ C.P. of 1 litre of mixture $=$ Re. $\frac{6}{7}$.
By the rule of alligation, we have :

7. (b) By the rule of alligation, we have :

So, ratio of 1 st and 2 nd quantities $=7: 14=1: 2$.
\therefore Required quantity replaced $=\frac{2}{3}$.
8. (c) C. P. of mixture $=\frac{2.10 \times 15+0.98 \times 1}{15+1}$

$$
=\text { Rs } 2.03 \text { per } \mathrm{kg}
$$

Profit on 1 kg of mixture $=$ Rs (2.25-2.03)

$$
=\text { Rs } 0.22
$$

\therefore Profit on 5 quintals mixture $=0.22 \times 500$
$(\because 1$ quintal $=100$
kg)
$=$ Rs 110
9. (d) By the rule of alligation, Alcohol concentration :

Original mixture

\therefore Alcohol must be added in the ratio of $10: 75$ or $2: 15$
\therefore Quantity of alcohol to be added in 10 litres

$$
=\frac{2}{15} \times 10=\frac{4}{3}
$$

10. (b) C. P. of mixture $=\frac{100 \times 60}{(100+25)}=$ Rs 48

Let x kg be mixed. Then,
$48=\frac{40 \times \mathrm{x}+55 \times 16}{16+\mathrm{x}}$
$\Rightarrow 8 \mathrm{x}=16[55-48] \Rightarrow \mathrm{x}=14 \mathrm{~kg}$
11. (c) By the rule of alligation,

Wine containing Wine containing

$\frac{\text { Quantity of } 32 \% \text { spirit }}{\text { Quantity of } 18 \% \text { spirit }}=\frac{6}{8}=\frac{3}{4}$

Now, wine of 32% spirit $=\frac{3}{7}$ of the butt
\therefore The rest part i.e $1-\frac{3}{7}=\frac{4}{7}$ of the butt has been stolen.
12. (c) Let a container contains x units of liquid and y units of liquid is taken out from it. If this operation is repeated n times, then the final quantity of the
liquid in the container is $401 \frac{4}{40}^{3}$
$=29.16$ litres
13. (c) Let the third type of tea is priced at Rs x per kg. Also suppose that the three types of tea mixed together are m, m and 2 m kg ,respectively.

Now, $\frac{126 m+135 m+2 m x}{m+m+2 m}=153$
or $\quad \frac{261+2 \mathrm{x}}{4}=153$
or $\quad 261+2 x=612$
or $\quad \mathrm{x}=\frac{351}{2}=$ Rs 175.5 per kg.

