ANSWERSAND EXPLANATIONS

EXERCISE 1

1. (a) Percentage profit $=\frac{2}{12-2} \quad 100 \quad 20 \%$
2. (c) $C P=20 \times 15+30 \times 13=₹ 690$
$\therefore \quad S P=\frac{4}{3}$ of $690 \times \frac{1}{50}=₹ 18.40$
3. (a) Let the cost price of the article be $₹ x$.

Then, $2(84-x)=96-x$
$168-2 x=96-x \quad \therefore x=₹ 72$
4. (e) If no discount is given, selling price of TV
$=17940 \times \frac{100}{92}=₹ 19500$

Cost price of TV $=17940{ }^{\prime} \frac{100}{119.60}=₹ 15000$
Gain $\%=\frac{19500-15000}{15000} \times 100=30 \%$
5. (a) List price of calculator
$=\frac{82.50}{30} \times 100=₹ 275$
Deepa bought calculator in
275×0.70 ₹ 192.50
6. (e) Let the marked price (SP) $=₹ x$

According to the question,
75% of $x=1545$
or, $\mathrm{x}=\frac{1545 \times 100}{75}=₹ 2060$
7. (e) CP of DVD player $=₹ x$

According to the question,
$\because x\left(1+\frac{22}{100}\right)=₹ 10980$
$\therefore \quad x=10980 \times \frac{50}{61}=₹ 9000$
8. (a) Let the cost price be ₹ x

Now, according to the question,
$\because x \times \frac{128}{100}=4544$
$\therefore x=\frac{4544 \times 100}{128}$
$=\frac{4544 \times 10}{128}$
$=₹ 3550$
9. (d) CP of 9 kg of sugar $=₹ 279$
$\therefore \quad \mathrm{CP}$ of 1 kg of sugar $=₹ \frac{279}{9}$
$\therefore \quad$ CP of 153 kg of sugar
$=₹\left(\frac{279}{9} \times 153\right)=₹ 4743$
10. (a) Required price
$=(4 \times 12 \times 2.25+3 \times 12 \times 3)$
$=(108+108)=₹ 216$
11. (e) Let the cost price of a toy be $=₹ x$ According to the question,
$\therefore \mathrm{x} \times \frac{125 \times 12}{100}=300$
or $\mathrm{x}=\frac{300 \times 100}{125 \times 12} ₹=₹ 20$
12. (a) CP of television set
$=₹\left(\frac{11500 \times 100}{125}\right)=₹ 9200$
13. (e) \because Cost of 13 kg of sugar $=₹ 195$
\therefore Cost of 1 kg of sugar $=₹ \frac{195}{13}$
\therefore Cost of 21 kg sugar $=\frac{195}{13} \times 21=₹ 315$
Similarly,
26 kg of rice $=\frac{544}{17} \times 26=₹ 832$
Cost of 19 kg of wheat
$=\frac{336}{21} \times 19=₹ 304$
\therefore Total cost $=(315+832+304) ₹$ = ₹ 1451
14. (e) Let the original selling price of watch $=₹ x$ According to the question,
$x \times \frac{76}{100}=779$
or, $\mathrm{x}=\frac{779 \times 100}{76}=₹ 1025$
15. (e) Cost of 26 gms of gold $=\frac{8250}{15} \times 26=₹ 14300$

Cost of 24 gms of silver $=\frac{6825}{21} \times 24=₹ 7800$
Cost of 52 gms of silver
$=\frac{312}{26} \times 52=₹ 624$
\therefore Total cost $=(14300+7800+624)=₹ 22724$
16. (b) Required cost price
$=\frac{100 \times 4921}{133}=₹ 3700$
17. (b) Cost price $=\frac{2817.50 \quad 100}{115}$

$$
=₹ 2450
$$

18. (c) 24 bats +32 sticks $=₹ 5600$
$\therefore \quad 8(3$ bats +4 sticks $)$
$=₹ 5600$
$\Rightarrow 3$ bats +4 sticks

$$
=\frac{5600}{8}=₹ 700
$$

19. (a) \therefore The cost of 4 cell-phones and 7 digital cameras $=₹ 125627$
\therefore cost of 8 cell-phones and 14 digital cameras
$=(2 \times 125627)$
$=₹ 251254$
20. (b) Let the CP of a calculator and pen-stand be ₹ x and ₹ y respectively.
According to the question,
$x+4 y=2140$
$x+5 y=1355$
$3 x+4 y=2140(i) \times 5-$ equation (ii) $\times 4$
$15 x+20 y-4 x-20 y=10700-5420$
$\Rightarrow \quad 11 \mathrm{x}=5280$
$\Rightarrow x=\frac{5280}{11}=₹ 480$
$\therefore \quad 4-\mathrm{CP}$ of 4 calculators $=₹(4 \times 480)=₹ 1920$
21. (a) Cost price
$=\frac{1754+1492}{2}=₹ 1623$
22. (c) Required amount
$=\frac{10500100100}{120140}=₹ 6250$
23. (e) 15 pendants +24 chains
$=3$ (5 pendants +8 chains)
$=3 \times 145785=₹ 437355$
24. (a) Original selling price
$=\frac{3675.4 \quad 100}{85}$
$=₹ 4324$
25. (d) Selling price
$=5600 \times \frac{3}{4}=₹ 4200$
$\therefore \quad$ Loss percent
$=\frac{(5600-4200)}{5600} \times 100$
$=25 \%$
26. (b) Required cost
$=\frac{450}{5} \times 8+\frac{4320}{12} \times 8+\frac{240}{4} \times 8$
$=720+2880+480=₹ 4080$
27. (b) Let S.P. $=₹$ 100. Then, C.P. $=₹ 96 ;$ Profit $=₹ 4$. $\therefore \quad$ Profit $\%$ $=\left(\frac{4}{96} \times 100\right) \%=\frac{25}{6} \%=4.17 \% . \approx 4.2 \%$
28. (a) Let the cost of production of the table be $₹ x$. Then, 125% of 115% of 110% of $x=1265$
$\Rightarrow \frac{125}{100} \times \frac{115}{100} \times \frac{110}{100} \times x=1265$
$\Rightarrow \frac{253}{160} \mathrm{x}=1265 \Rightarrow \mathrm{x}=\left(\frac{1265 \times 160}{253}\right)=$ Rs. 800.
29. (d) C. P. for 50 pencils $=₹ 100$
\therefore C. P. for 45 pencils $=\frac{100}{50} \times 45=$ Rs. 90
$=$ S.P. of 45 pencils
\therefore No gain, no loss
30. (c) Retailer's S.P. $=$ M.P.

Retailer's C.P. for 30 Pens $=$ M.P. of 27 pens
\therefore Retailer's S.P. for 30 pens $=$ M.P of 30 pens
$\therefore \%$ gain $=\frac{30-27}{27} \times 100=\frac{100}{9}=11 \frac{1}{9} \%$
31. (a) Let M.P. $=₹ 100$
then discount $=₹ 16$
\therefore when discount $=₹ 80$, then M.P $=₹ \mathrm{x}$
Now, $\begin{array}{ll}100 & \mathrm{x} \\ 16 & 80 \downarrow\end{array} \downarrow$ it's direct proportion
$\therefore 100: \mathrm{x}:: 16: 80$
$\Rightarrow 16 \mathrm{x}=100 \times 80 \Rightarrow \mathrm{x}=₹ 500$
Now, since M. P. = ₹ 500 , therefore, after 16%
discount man paid $=500\left(1-\frac{16}{100}\right)=$ Rs 420
32. (c) Let C.P. $=₹ 100$. Then M.P. $=₹ 120$ and S.P. $=₹$ 108
$\%$ discount $=\left(\frac{12}{120} \times 100\right) \%=10 \%$
33. (b) Offering price $=\frac{50 \times 108}{100}=$ Rs 54

After 10% discount, S.P. $=90 \%$ of 54

$$
=\frac{90 \times 54}{100}=\operatorname{Rs} 48.60
$$

34. (c) Let A paid $=₹ \mathrm{x}$
125% of 120% of $x=225$
$\Rightarrow \frac{125}{100} \times \frac{120}{100} \times \mathrm{x}=225$
$\Rightarrow \mathrm{x}=\frac{225 \times 100 \times 100}{125 \times 120}=$ Rs 150
35. (c) C.P. for $\mathrm{B}=120 \%$ of $₹ 400=$ Rs. $\left(\frac{120}{100} \times 400\right)=$
₹ 480
C.P. for $\mathrm{C}=110 \%$ of ₹ $480=$ Rs. $\left(\frac{110}{100} \times 480\right)=$
₹ 528 .
36. (c) C.P. $=50 \times 4=₹ 200$

Remaining eggs $=600-40=560$
Let S.P. of eggs $=₹ \mathrm{x}$ per dozen
\therefore Total S.P. $=₹ \frac{560}{12} \mathrm{x}$
$\therefore \frac{560}{12} \mathrm{x}=\frac{(100+5) \%}{100} \times 200$
$\Rightarrow \mathrm{x}=\frac{105}{100} \times \frac{2400}{560}=$ Rs. 4.5 per dozen
37. (d) Let C. P. $=$ ₹ x . Then
S. $\mathrm{P}_{1}-\mathrm{S} . \mathrm{P}_{2}=₹ 6$
$\frac{(100+10) \mathrm{x}}{100}-\frac{(100+8) \mathrm{x}}{100}=6$
$\Rightarrow 110 \mathrm{x}-108 \mathrm{x}=600 \Rightarrow 2 \mathrm{x}=600 \Rightarrow \mathrm{x}=₹$
300
38. (b) C.P. $=200\left(1-\frac{10}{100}\right)\left(1-\frac{15}{100}\right)+7$

$$
=\frac{200 \times 90 \times 85}{100 \times 100}+7=\text { Rs } 153+7=₹ 160
$$

$\therefore \%$ gain $=\frac{200-160}{160} \times 100=\frac{40}{160} \times 100=25 \%$

EXERCISE 2

1. (a) Purchase price $=₹ 480$

Repair cost $=20 \%$ of ₹ $480=₹ 96$
\therefore Total cost = ₹ $480+$ ₹ 96 = ₹ 576
Net profit = ₹ 144
$\therefore \quad$ Selling price $=$ Total cost + Net profit
= ₹ $576+144$ = ₹ 720
Now, Selling price - Purchase price

$$
=₹ 720-₹ 480=₹ 240
$$

$\therefore \quad$ Reqd percentage $=\frac{₹ 240}{₹ 480} \times 100=50 \%$
2. (a) Let the price of one saree and one shirt be $₹ x$ and ₹ y respectively.
Then, $2 x+4 y=1600$
or, $x+2 y=800 \ldots$ (i)
Also, $x+6 y=1600$
Solving equations (i) and (ii), we get
$4 y=800$ or, $y=200$
$\therefore \quad$ cost of 12 shirts $=12 \times 200=₹ 2400$
3. (b) CP of 150 calculators $=150 \times 250=₹ 37,500$.
\therefore total $\mathrm{CP}=37,500+2500=₹ 40,000$
Marked price of 150 calculators $=150 \times 320=₹$ 48,000

Selling price after discount $=48000 \times \frac{95}{100}$

$$
=₹ 45,600
$$

\therefore Percentage profit $=$
$\frac{45,600-40,000}{40,000} \times 100=14 \%$
4. (b) C.P. of 200 kg of mixture $=₹(80 \times 13.50+120$ $\times 16$)

$$
=₹ 3000 .
$$

S.P. $=116 \%$ of $₹ 3000$
$=₹ \frac{116}{100} 3000 \quad ₹ 3480$.
\therefore Rate of S.P. of the mixture
$=₹ \frac{3480}{200} \quad$ per kg
$=₹ 17.40$ per kg .
5. (b) Let profit per litre $=₹ 20$

So, C.P. / litre = ₹ 100
S.P. / litre = ₹ 120

On adding 10% water to the milk
C.P. $\frac{9}{10}$ litre ₹ 100
S.P. $\frac{9}{10}$ litre $₹ 120$
S.P. / litre ₹ $\frac{120 \quad 10}{9} ₹ \frac{400}{3}$
\Rightarrow Profit / litre $\quad \frac{400}{3} \quad 100 \quad 33.33$
$\%$ by which profit increases $=33.33-20=13.3$
6. (a) S.P. of the 1 st chair $=₹ 500$

Gain $=20 \%$
\therefore C.P. of the 1 st chair $=\frac{500 \quad 100}{100 \quad 20} \quad \frac{500 \quad 100}{120}$

$$
\frac{1250}{3}
$$

S.P. of the 2 nd chair $=₹ 500$

Loss $=12 \%$
\therefore C.P. of the 2 nd chair $=\frac{500 \quad 100}{100 \quad 12} \quad \frac{500 \quad 100}{88}$

$$
=\frac{500 \quad 25}{22} \quad \frac{250 \quad 25}{11}
$$

$\frac{6250}{11}$
Now S.P. of both the chairs $=₹ 1000$
C.P. of both the chairs

$$
\begin{aligned}
& \frac{1250}{3} \quad \frac{6250}{11} \quad \frac{13750}{33} \quad 18750 \\
& \text { Net gain }=1000-\frac{32500}{33} \quad \frac{500}{33} \\
\Rightarrow & \text { Gain } \%=\frac{500 / 33}{32500 / 33} \quad 100=\frac{500}{32500} \quad 100
\end{aligned}
$$

$=\frac{100}{65}=\frac{20}{13}=1.5 \% \quad($ To one place of decimal $)$
7. (a) Women's shirt comprise 60% of the output.
\therefore Men's shirts comprise $(100-60)=40 \%$ of the out put.
\therefore Average profit from men's shirt $=8 \%$ of 40

$$
=3.2 \text { out of } 40
$$

Overall average profit $=6$ out of 100
\therefore Average profit from women's shirts $=2.8$ out of 60 i.e. 0.0466 out of each shirt.
8. (c) Retailer price $=$ list price $\left(1-\frac{\mathrm{d}_{1}}{100}\right)\left(1-\frac{\mathrm{d}_{2}}{100}\right)$
$\Rightarrow 122.40=160\left(1-\frac{10}{100}\right)\left(1-\frac{\mathrm{d}_{2}}{100}\right)$
$\Rightarrow 1-\frac{\mathrm{d}_{2}}{100}=\frac{122.40 \times 100}{160 \times 90}=0.85$
$\Rightarrow \mathrm{d}_{2}=(1-0.85) \times 100=15 \%$
9. (b) $(100-$ loss $): \mathrm{S}_{1}::(100+$ gain $): \mathrm{S}_{2}$
$\therefore(100-12.5): 420::(100+12.5): \mathrm{S}_{2}$
$87.5: 420:$: $112.5: \mathrm{S}_{2}$
$\Rightarrow 87.5 \times \mathrm{S}_{2}=420 \times 112.5$
$\Rightarrow \mathrm{S}_{2}=\frac{420 \times 1125}{875}=540$
10. (c) Let the value of radio be $₹ \mathrm{x}$.

Then C. P. $=\operatorname{Rs} \frac{3}{4} x$, S. P. $=x\left(1+\frac{20}{100}\right)=\frac{6}{5} x$
$\therefore \%$ profit $\frac{\frac{6}{5} \mathrm{x} \frac{3}{4} \mathrm{x}}{\frac{3 \mathrm{x}}{4}} \quad 100 \quad 60 \%$
11. (b) $(100-20): 45::(100+20) \mathrm{S}_{2}$
$\Rightarrow \mathrm{S}_{2}=\frac{45 \times 120}{80}=$ Rs. 67.50
12. (d) C.P. for 1 lichchu $=\frac{10}{11}$ paise
S. P. for 1 lichchu $=\frac{11}{10}$ paise
\therefore gain $\%=\frac{\frac{11}{10}-\frac{10}{11}}{\frac{10}{11}} \times 100=21 \%$
13. (b) S.P. for $1 \operatorname{egg}=₹ \frac{5}{10}=\operatorname{Rs} \frac{1}{2}$
\therefore C. P. for $1 \mathrm{egg}=\frac{100}{(100+20)} \times \frac{1}{2}=\operatorname{Rs} \frac{5}{12}$
\Rightarrow He bought 12 eggs for 5 rupees.
14. (c) Let he sells x oranges per rupee.
$\frac{1}{36}:(100-4):: x:(100+8)$
$\Rightarrow \mathrm{x}=\frac{108}{96 \times 36}=\frac{1}{32}$
He sells 32 oranges per rupee.
15. (b) C.P. for one coconut $=\operatorname{Rs} \frac{150}{100}=\operatorname{Rs} \frac{3}{2}$
S.P. for one coconut $=₹ 2$

Profit on one coconut $=2-\frac{3}{2}=\operatorname{Rs} \frac{1}{2}$
\therefore Profit on 2000 coconut $=\frac{1}{2} \times 2000=$ Rs 1000
16. (a) Let C.P. $=₹ 100$, then M. P. $=₹ 150$
S.P. $=70 \%$ of $150=₹ 105$
$\therefore \%$ profit $=\frac{105-100}{100} \times 100=5 \%$
17. (a) C.P. for one orange $=\operatorname{Rs} \frac{1}{15}$

Then S.P. $=\frac{(100+25)}{100} \times \frac{1}{15}=\frac{125}{100 \times 15}=\frac{1}{12}$

Hence S.P. for one orange $=\operatorname{Rs} \frac{1}{12}$
$\therefore 12$ oranges must be sold for a rupee to gain 25%.
18. (b) C.P. of one litre $=₹ 6$

After adding water to it
One has to pay ₹ 7.20 for $\frac{2}{3}$ litre of milk.
So S.P. of $\frac{2}{3}$ litre of milk $=₹ 7.20$
\Rightarrow S.P. of 1 litre of milk $\quad \operatorname{Rs} \frac{7.20}{2} \quad 3 \quad$ Rs 10.80
\because S.P. C.P.
Hence gain $\begin{array}{lllll}\frac{10.80}{6} & 6 & 100 & \frac{4.80}{6} & 100\end{array}$
$=0.80 \times 100=80 \%$
19. (b) Let profit per litre $=₹ 20$

So, C.P. / litre =₹ 100
S.P. / litre = ₹ 120

On adding 10% water to the milk
C.P. per $\frac{9}{10}$ litre Rs 100
S.P. per $\frac{9}{10}$ litre Rs 120
S.P. per litre Rs $\frac{120 \quad 10}{9} \quad$ Rs $\frac{400}{3}$
\Rightarrow Profit / litre $\begin{array}{llll}\frac{400}{3} & 100 & 33.33\end{array}$
$\%$ by which profit increases $=33.33-20=13.3$
20. (d) Let C.P. $=$ ₹ x . Then,
S.P. $=\frac{(100-7)}{100} \times x=\frac{93}{100} x$

Also, $\left(\frac{93}{100} x+48\right) \frac{100}{(100+5)}=x$
$\Rightarrow 93 \mathrm{x}+4800=105 \mathrm{x}$
$\Rightarrow 12 \mathrm{x}=4800 \Rightarrow \mathrm{x}=₹ 400$
21. (a) C.P. of 150 calculators
$=150 \times 250+2500=37500+2500=₹ 40000$
Labelled price of 150 calculators
$=150 \times 320=₹ 48000$
Discount allowed $=5 \%$
\therefore S.P. of 150 calculators

$$
=48000-5 \% \text { of } 48000=₹ 45600
$$

$\therefore \quad$ Profit $\%=\frac{5600}{40000} \times 100=14$
22. (b) $\frac{\text { True weight }}{\text { False weight }}=\frac{100+\text { gain } \%}{100+\mathrm{x}}$

Here S.P. $=$ C. P. $\quad \therefore \mathrm{x}=0$
\Rightarrow False weight $=\frac{1000 \times 100}{125}=800 \mathrm{gm}$
23. (c) Let cost Price $=₹ 100$
$\therefore \quad$ Marked price $=₹ 135$
After discount, selling price $=135-13.5=121.5$
$\therefore \quad$ Profit $\%=121.5-100=21.5 \%$
24. (b) Let the C.P. of horse $=₹ \mathrm{x}$

Then the C.P. of carriage $=₹(3000-x)$
20% of $x-10 \%$ of $(3000-x)=2 \%$ of 3000
$\Rightarrow \frac{\mathrm{x}}{5}-\frac{(3000-\mathrm{x})}{10}=60$
$\Rightarrow 2 \mathrm{x}-3000+\mathrm{x}=600$
$\Rightarrow 3 \mathrm{x}=3600 \Rightarrow \mathrm{x}=1200$
25. (d) Here, $\mathrm{SP}_{1}=\mathrm{SP}_{2}$
$\Rightarrow 140 \mathrm{CP}_{1}=60 \mathrm{CP}_{2} \Rightarrow \frac{\mathrm{CP}_{1}}{\mathrm{CP}_{2}}=\frac{6}{14}=\frac{3}{7}$
$\therefore \mathrm{CP}_{1}=\frac{3}{(3+7)} \times 8000=$ Rs 2400
and $\mathrm{CP}_{2}=8000-2400=₹ 5600$
26. (a) Let S.P. $=₹ \mathrm{x}$ per kg
\therefore S.P. of $4 \mathrm{~kg}=₹ 4 \mathrm{x}$
$\therefore 4 \mathrm{x} \frac{100-10}{100} 300$
$\Rightarrow \mathrm{x}=\frac{270}{4}=$ Rs 67.50
27. (a) Let C.P. of one orange $=\operatorname{Re} 1$

Then C.P. of 8 oranges $=₹ 8$
S.P of 8 oranges $=₹ 9$
\therefore Gain $\%=\frac{9-8}{8} \times 100=\frac{100}{8}=12 \frac{1}{2} \%$
28. (c) Let C.P. of 1 article $=\operatorname{Re} 1$
then C.P. of 25 articles $=₹ 25$
and S.P. of 25 articles $=₹ 20$
\therefore loss $\%=\frac{25-20}{20} \times 100=25 \%$
29. (d) Let C.P. of one metre of cloth $=₹ 1$
then C.P. of 66 metres of cloth $=₹ 66$
Gain $=$ C.P. of 22 metres $=₹ 22$
$\%$ gain $=\frac{22}{66} \times 100=33 \frac{1}{3} \%$

Shortcut method :

If on selling ' x ' articles, a man gains equal to the
C.P. of ' y ' articles, then $\%$ gain $=\frac{y}{x} \times 100$
$\therefore \%$ gain $=\frac{22}{66} \times 100=33 \frac{1}{3} \%$
30. (b) Loss $=$ C.P. of 66 metres - S.P. of 66 metres

$$
=\text { S.P. of } 22 \text { metres }
$$

\Rightarrow C.P. of 66 metres $=$ S.P. of 88 metres

$$
\begin{aligned}
\% \text { loss }= & \frac{\text { loss }}{\text { C.P. of } 66 \text { metres }} \times 100 \\
& =\frac{\text { S.P of } 22 \text { metres }}{\text { C.P of } 66 \text { metres }} \times 100 \\
& =\frac{\text { S.P. of } 22 \text { metres }}{\text { S.P. of } 88 \text { metres }} \times 100 \\
= & \frac{22}{88} \times 100=25 \%
\end{aligned}
$$

31. (b) Equivalent discount $=10+20-\frac{10 \times 20}{100}$

$$
=30-2=28 \%
$$

32. (b) Let the C.P. of the goods be ₹ 100
\Rightarrow Marked price of the goods $=₹ 120$
Discount $=10 \% \Rightarrow$ S.P. is 90% of ₹ $120=$ ₹ 108
\therefore Gain\% $=(108-100)=8 \%$.
33. (d) For same article, $\frac{100-\mathrm{d}_{1}}{100-\mathrm{d}_{2}}=\frac{100+\mathrm{g}_{1}}{100+\mathrm{g}_{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{100-25}{100-10}=\frac{100+25}{100+\mathrm{g}_{2}} \Rightarrow \frac{75}{90}=\frac{125}{100+\mathrm{g}_{2}} \\
& \Rightarrow 100+\mathrm{g}_{2}=\frac{90 \times 125}{75}=150 \Rightarrow \mathrm{~g}_{2}=50 \%
\end{aligned}
$$

34. (c) $\mathrm{SP}=90 \times 1.2=₹ 108$

Marked price $=\frac{108}{0.85}=₹ 127.05$
35. (d) Let the SP of the article be ₹ x

Expenses $=15 \%$ of $\mathrm{x}=₹ 0.15 \mathrm{x}$

Profit $=10 \%$ of $\mathrm{x}=₹ 0.10 \mathrm{x}$
$\mathrm{CP}=₹ 9$ (given)
Therefore, $9+0.15 \mathrm{x}+0.1 \mathrm{x}=\mathrm{x} \Rightarrow \mathrm{x}=12$
$\therefore \%$ increase for marked price $=\frac{12-9}{9} \times 100$

$$
=\frac{100}{3} \%
$$

36. (c) $\left(100+\mathrm{g}_{1}\right): \mathrm{S}_{1}::\left(100+\mathrm{g}_{2}\right): \mathrm{S}_{2}$
$(100+20): 30::\left(100+\mathrm{g}_{2}\right): 30\left(1-\frac{10}{100}\right)$
$[\because 10 \%$ discount is
allowed on S.P.]
$120: 30::\left(100+\mathrm{g}_{2}\right): 27$
$100+\mathrm{g}_{2}=\frac{120 \times 27}{30}=108$
$\Rightarrow \mathrm{g}_{2}=8 \%$
37. (b) Let C.P. $=₹ 100$, Also, let M.P. $=₹ x$

Given, C.P. after 20% discount on M.P. = C.P.
$\Rightarrow 80 \%$ of $\mathrm{x}=100$
$\Rightarrow \mathrm{x}=\frac{100 \times 100}{80}=$ Rs 125
\therefore M.P. $=25 \%$ above C.P.
38. (c) Real profit $\%$ is the profit $\%$ on C.P.

Real profit $\%=\frac{\% \text { profit on S.P. }}{100-\% \text { profit on S.P. }} \times 100$

$$
=\frac{20}{100-20} \times 100=25 \%
$$

39. (c) Let the C.P. be ₹ 100
S.P. $=₹ 120$

Discount being 4%, S.P. is 96% of sale price.
$\therefore 96 \%$ of sale price $=₹ 120$
\Rightarrow sale price $=₹ 120 \times \frac{100}{96}=$ Rs. 125
\therefore Sale price is 25% higher than the C.P.
40. (d) Let his loss $=₹ x$. Then,
C.P. $=5000+x=5600-2 x$
$\Rightarrow 3 \mathrm{x}=600 \Rightarrow \mathrm{x}=200$
\therefore C.P. $=5000+200=₹ 5200$
$\mathrm{C}=$ Constant
$\mathrm{PQ}=$ Price per quintal
$\therefore 1000=\mathrm{C}+250 \mathrm{Q}$
and $980=\mathrm{C}+240 \mathrm{Q}$
on solving (1) and (2), we get
$\mathrm{Q}=2, \mathrm{C}=500$
Required expense $=500+350 \times 2=1200$
6. (b) Let the original price of the jewel be ₹ P and let the profit earned by the third seller be $\mathrm{x} \%$.
Then, $(100+\mathrm{x}) \%$ of 125% of 120% of $\mathrm{P}=165 \%$ of P
$\Rightarrow\left[\frac{(100+\mathrm{x})}{100} \times \frac{125}{100} \times \frac{120}{100} \times \mathrm{P}\right]=\left(\frac{165}{100} \times \mathrm{P}\right)$
$\Rightarrow(100+\mathrm{x})=\left(\frac{165 \times 100 \times 100}{125 \times 120}\right)=110 \Rightarrow \mathrm{x}=10 \%$.
7. (b) Let C. P. = ₹ x
then profit $=$ S.P. - C. P.
$\Rightarrow \frac{1}{10} \times \mathrm{x}=891-\mathrm{x} \Rightarrow \frac{11 \mathrm{x}}{10}=891$
$\Rightarrow \mathrm{x}=\frac{891 \times 10}{11}=\mathrm{Rs} 810$
8. (b) Let S. P. = ₹ x per kg
\therefore S.P. of 2 kg of rice $=₹ 2 \mathrm{x}=$ Loss
Now, Loss = C.P. - S.P.
$2 \mathrm{x}=600-10 \mathrm{x}$
$\Rightarrow \mathrm{x}=₹ 50$ per kg
9. (a) S.P. of the 1 st chair $=₹ 500$

Gain $=20 \%$
\therefore C.P. of the 1st chair $=\begin{array}{lll}\left.\begin{array}{lll}500 & 100 & 500 \quad 100 \\ 100 & 20\end{array}\right)\end{array}$ $\frac{1250}{3}$
S.P. of the 2 nd chair $=₹ 500$

Loss $=12 \%$
\therefore C.P. of the 2 nd chair $=\begin{array}{llll}\left.\begin{array}{lll}500 & 100 & 500 \quad 100 \\ 100 & 12 & \\ 88\end{array}\right)\end{array}$
$\mathrm{I}=\mathrm{C}+\mathrm{PQ}$ where
I = Monthly expense

$$
=\frac{500 \quad 25}{22} \quad \frac{250 \quad 25}{11}
$$

$\frac{6250}{11}$
Now S.P. of both the chairs $=₹ 1000$
C.P. of both the chairs

$$
\begin{aligned}
& \frac{1250}{3} \quad \frac{6250}{11} \quad \frac{13750 \quad 18750}{33} \quad \frac{32500}{33} \\
& \text { Net gain }=1000-\frac{32500}{33} \quad \frac{500}{33} \\
\Rightarrow & \text { Gain } \%=\frac{500 / 33}{32500 / 33} \quad 100=\frac{500}{32500} \quad 100 \\
= & \frac{100}{65}=\frac{20}{13}=1.5 \% \quad(\text { To one place of decimal })
\end{aligned}
$$

10. (a) Women's shirt comprise 60% of the output.
\therefore Men's shirts comprise $(100-60)=40 \%$ of $t \quad h \quad e$ out
put.
\therefore Average profit from men's shirt $=8 \%$ of 40

$$
=3.2
$$

out of 40
Overall average profit $=6$ out of 100
\therefore Average profit from women's shirts $=2.8$ out of
i.e. 0.0466 out of each shirt.
11. (c) Here, in whole transaction, there is neither gains nor loss, therefore,

Amount of gain in one watch
$=$ Amount of loss in other watch
$\Rightarrow 0.15 \times \mathrm{CP}_{1}=0.10 \times \mathrm{CP}_{2}$
$\Rightarrow \frac{\mathrm{CP}_{1}}{\mathrm{CP}_{2}}=\frac{0.10}{0.15}=\frac{2}{3}$
Also $\mathrm{CP}_{1}+\mathrm{CP}_{2}=560$
$\therefore \mathrm{CP}_{1}=\frac{2}{(2+3)} \times 560=$ Rs 224
and $\mathrm{CP}_{2}=560-224=₹ 336$
12. (b) Let the C.P. be ₹ 100

First S.P. $=₹ 115$

Second C.P. $=₹ 90$
Second S.P $=125 \%$ of $₹ 90=₹ 112.50$
Difference of two selling prices is ₹ 115 - ₹ 112.50
$=₹ 2.50$ and C.P. of the article is $₹ 100$
But actual difference is ₹ 4 .
\therefore C.P. $=\frac{100}{2.50} \times$ Rs. $4=$ Rs. 160.
13. (a) Let the CP of the article be ₹ x .

Then, $S P=₹ \frac{105 x}{100}$
Now, new $\mathrm{CP}=₹ \frac{95 \mathrm{x}}{100}$ and new $\mathrm{SP}=\frac{105 \mathrm{x}}{100}-1$
According to the question
$\frac{105 \mathrm{x}}{100}-1-\frac{95}{100}=\frac{10 \times 95 \mathrm{x}}{100 \times 100}$
$\therefore \mathrm{x}=₹ 200$
14. (c) Retailer price $=$ list price $\left(1-\frac{\mathrm{d}_{1}}{100}\right)\left(1-\frac{\mathrm{d}_{2}}{100}\right)$
$\Rightarrow 122.40=160\left(1-\frac{10}{100}\right)\left(1-\frac{\mathrm{d}_{2}}{100}\right)$
$\Rightarrow 1-\frac{\mathrm{d}_{2}}{100}=\frac{122.40 \times 100}{160 \times 90}=0.85$
$\Rightarrow \mathrm{d}_{2}=(1-0.85) \times 100=15 \%$
15. (a) Retailer's price $=112 \%$ of 110% of $(120 \%$ of 25)
$=\frac{112}{100} \times \frac{110}{100} \times \frac{120}{100} \times 25=$ Rs $36.96 \approx \operatorname{Rs} 37$
16. (c) Let C.P. $=₹ x$
120% of $\frac{225}{2} \%$ of $x \quad 2700$
$\Rightarrow \frac{120}{100} \quad \frac{225}{2 \quad 100} \quad$ x $\quad 2700$
$\Rightarrow \mathrm{x}=2000$
17. (b) Let C.P. $=₹$ 100. Then, marked price $=₹ 150$.
S.P. $=75 \%$ of $₹ 150=₹ 112.50$
\therefore Gain $\%=12.50 \%$
18. (d) C.P. of $\frac{1}{4}$ th. of goods $=\frac{1}{4} \times ₹ 840=₹ 210$
S.P. of these goods $=80 \%$ of $₹ 210=₹ 168$

Remaining cost of the goods $=₹ 840-₹ 210$

$$
=₹ 630
$$

Over all S.P. of the goods $=120 \%$ of $₹ 840=₹$ 1008
\therefore Remaining goods must be sold for ₹ $1008-₹$ $168=₹ 840$

$$
\text { Gain } \%=\frac{210}{630} \quad 100 \quad 33 \frac{1}{3} \%
$$

19. (c) Let the C.P. for the manufacturer be ₹ 100 .

Then, C.P. for the wholesaler $=₹ 118$
C.P. for the retailer $=118+20 \%$ of $118=₹ 141.60$
C.P. for the customer $=141.60+141.60 \times \frac{25}{100}=$
₹ 177
$\therefore \quad$ If the C.P. for the customer is $₹ 177$, then the C.P. for the manufacturer is ₹ 100 .

If the C.P. for the customer is $₹ 30.09$, then the
C.P. for manufacturer is $\frac{100}{177} \times 30.09=₹ 17$
20. (a) Let the CP of the sunglasses be $₹ 100$.

Now, $\mathrm{SP}=₹ 125$
New CP = ₹ 75
New SP $=75 \times 1.4=₹ 105$
Thus, if he sells for ₹ $(125-105)=20$ less, then
$\mathrm{CP}=100$
If he sells for ₹ 10 less, then

$$
\mathrm{CP}=\frac{100}{20} \times 10=\text { Rs } 50
$$

21. (c) Let the price of first grade cycles be ₹ x each and that of second grade cycles be $₹ \mathrm{y}$ each.
Now, $8 \mathrm{x}+22 \mathrm{y}=3150$
Let he sells A grade cycle at a rate of $₹$ z per bicycle. Then,
$8 z+\frac{22 \times 3}{4} z=3150 \times 1.4$
or $32 z+66 z=17640$
or $98 z=17640$ or $z=180$
He should sell the first grade bicycles at a rate of ₹ 180 .
22. (b) Let the CP of a pen and a book be ₹ x and ₹ y, respectively.
$0.95 x+1.15 y=(x+y)+7$
or $0.15 y-0.05 x=7$
\qquad
and $1.05 x+1.1 y=(x+y)+13$
or $0.05 x+0.1 y=13$
\qquad
Solving (1) and (2),
We get, $y=₹ 80$
23. (d) CP of 3500 cassettes $=₹ 3,50,000$

SP of each set of $30(29+1)$ cassettes
Rs. $29 \quad 150 \quad \frac{75}{100}$
$=₹ 29 \times 112.50=₹ 3262.50$
$\therefore \quad$ SP of 3500 cassettes including 500 free cassettes $=3262.50 \times 100=₹ 3,26,250$
Overall loss $=₹ 3,50,000-₹ 3,26,250=₹ 23750$
$\therefore \quad \%$ loss $=\frac{23750}{350000} \times 100=6.8$

