EXERCISE 1

1. (a) Given, $\frac{3}{21} \frac{x}{35} \Rightarrow \quad x \quad \frac{3 \quad 35}{21} \quad 5$
2. (c) Let the numbers be $5 x$ and $4 x$.

Now, difference of numbers $=10$
i.e. $5 x-4 x=10 \Rightarrow x=10$
\therefore Larger number $=10 \times 5=50$
3. (d) Suppose the first number is x and the second number y.

Therefore, 40% of $x=\frac{2}{3}$ of y

$$
\therefore \quad \frac{x}{y}=\frac{2}{3} \times \frac{100}{40}=\frac{5}{3}
$$

4. (a) Let the salaries of A and B be $9 x$ and $4 x$.

$$
\begin{aligned}
& 9 x \times \frac{115}{100}=5175 \\
\therefore \quad & x=500 \\
\therefore \quad & \text { salary of } B=500 \times 4=₹ 2000
\end{aligned}
$$

5. (a) Reqd ratio $5 \frac{140}{100}: 7 \frac{150}{100}: 8 \frac{175}{100}$
$=5 \times 140: 7 \times 150: 8 \times 175=2: 3: 4$
6. (d) Total number of students in the school $=819$

Number of girls $=364$
\therefore Number of boys $=819-364=455$
\therefore Required ratio $=435: 364=5: 4$
7. (d) Share of Urmila in dividend

$$
=\left(\frac{2}{6} \times 57834\right)=₹ 19278
$$

8. (c) Let the present ages of Sushama and Karishma be $6 x$ and $7 x$ respectively.
$\therefore \quad \frac{6 x+8}{7 x+8}=\frac{8}{9}$
or $56 \mathrm{x}+64=54 \mathrm{x}+72$
$x=\frac{8}{2}=4$
Required ratio $=\frac{6 \times 4+12}{7 \times 4+12}=\frac{36}{40}=9: 10$
9. (e) Let the number of girls $=x$
\therefore Number of boys $=1.16 \mathrm{x}$
\therefore Required ratio $=1.16 \mathrm{x}: \mathrm{x}$

$$
=116: 100=29: 25
$$

10 (d) According to the question,

$$
\begin{equation*}
\frac{A}{B}=\frac{4}{7} \tag{i}
\end{equation*}
$$

and $\frac{A\left(1+\frac{50}{100}\right)}{B\left(1-\frac{25}{100}\right)}=\frac{8}{7}$
From equations (i) and (ii), we cannot find the earning of A and B .
11. (d) Ratio of the amounts received by A, B and C $=7$: 8: 6
$\therefore \quad$ Sum of the ratios $=7+8+6=21$
Sum received by

$$
\begin{aligned}
& \text { Pinku }=\frac{7}{21} \times 4200=₹ 1400 \\
& \text { Rinku }=\frac{8}{21} \times 4200=₹ 1600 \\
& \text { Tinku }=\frac{6}{21} \times 4200=₹ 1200
\end{aligned}
$$

According to the question,
On adding ₹200 to the share of each one, the required ratio
$=1600: 1800: 1400$
$=8: 9: 7$
12. (c) Total number of students $=1495$
\therefore Number of boys $=3250-1495=1755$
\therefore Required ratio $=1755: 1495=27: 23$
13. (e) Ratio of the capital of Rinku and Pooja
$=\frac{5100}{6600}=\frac{51}{66}=\frac{17}{22}$
\therefore Rinku's share $=\frac{2730 \times 17}{17+22}=₹ 1190$
14. (b) Let the present ages of Richa and Shelly be 5 x and 8 x years.
According to the question,
After 10 years,
$\frac{5 x+10}{8 x+10}=\frac{7}{10}$
or, $56 \mathrm{x}+70=50 \mathrm{x}+100$
or, $56 x-50 x=100-70$
or, $6 x=30$
$\therefore \mathrm{x}=\frac{30}{6}=5$
\therefore Shelly's present age $=8 \mathrm{x}$
$=8 \times 5=40$ years
15. (d) The sum of money is not known.
16. (a) Let the age of woman be $2 x$ years and that of her daughter be x years.
According to the question,
$2 x+x=2 \times 42$
or, $3 \mathrm{x}=84$
or, $\mathrm{x}=\frac{84}{3}=28$
\therefore Daughter's age $=28$ years
17. (c) Let the number of girls be $=x$
\therefore Number of the boys $=\frac{115 x}{100}$
\therefore Required ratio $=\frac{115 x}{100} . \mathrm{x}=23: 20$
18. (a) Let the present ages of Smita and Kavita be $3 x$ and 8 x years respectively

According to questions,
$\frac{3 x+7}{8 x+7}=\frac{4}{9}$
or, $32 x+28=27 x+63$
or, $32 \mathrm{x}-27 \mathrm{x}=63-28$
or, $5 \mathrm{x}=35$
or, $x=\frac{35}{5}=7$
\therefore Kavita's present age $=8 \mathrm{x}$
$=8 \times 7=56$ years
19. (a) Let the ages of man and his son be $5 x$ and $3 x$ respectively.
$\because 5 x+3 x=2 \times 48$
$\Rightarrow 8 \mathrm{x}=96$
$\Rightarrow \mathrm{x}=\frac{96}{8}=12$
\therefore Son's age $=12 \times 3=36$ years
20. (d) Difference in age
$=\frac{9 \times(6-5)(9-8)}{6 \times 8-9 \times 5}$
$=\frac{9 \times 1 \times 1}{3}=3$ years
21. (e) Let Arun's present age be x years.

Then, Deepak's present age $=(x+14)$ years

Then, $\begin{array}{cc}\frac{x}{x} \quad 7 & \frac{5}{7}\end{array}$
$\begin{array}{llll}7 x & 5 x & 35 & 49\end{array}$

$$
\text { x } \quad \frac{84}{2} \quad 42
$$

\therefore Deepak's present age
$=42+14=56$ years
22. (d) Data is given in ratio. So age can't be determined.
23. (a) Let number of students in Arts and Commerce were 4 x and 5 x respectively.
Then,
$\frac{4 x}{5 x+65}=\frac{8}{11}$
$\Rightarrow 44 x-40 x=520$
$\Rightarrow x=\frac{520}{4}=130$
\therefore Number of students in Arts
$=4 \times 130$
$=520$
24. (d) Ratio of capital
$=50000 \times 12: 80000 \times 6$
$=5: 4$
\therefore Sarita's share $=\frac{18000 \times 5}{(5+4)}$
$=₹ 10000$
25. (c) Let the original number of boys and girls be $6 x$ and 5 x respectively.
Then, $\frac{6 x-8}{5 x ~ 2} \quad \frac{11}{7}$

$$
\begin{array}{llll}
55 x & 42 x & 56 & 22
\end{array}
$$

$$
x \quad \frac{78}{13} \quad 6
$$

\therefore Number of boys
$=6 \times 6+8=44$
26. (a) Let the present ages of P and Q be $3 x$ and $4 x$ respectively.
Then,
$(4 x+4)-(3 x+4)=5$
$\Rightarrow 4 \mathrm{x}-3 \mathrm{x}=5$
$\Rightarrow x=5$
\therefore P's present age
$=3 \times 5=15 \mathrm{yrs}$.
27. (a) Present age of Meena
$=\frac{8 \times 8 \times(10-3)}{24-10}$
$=\frac{8 \times 8 \times 7}{14}=32$ years
28. (b) Ratio of the salaries of Sumit and Rajan
$=\frac{2}{5}: \frac{1}{2}=4: 5$
Rajan's salary $=\frac{5}{9} \times 36000=₹ 20000$
29. (a) $\frac{?}{84}=\frac{189}{?}$
or $\quad ?^{2}=84 \times 189$
or $?^{2}=21 \times 4 \times 21 \times 9$
or $?^{2}=21^{2} \times 2^{2} \times 3^{2}$
$\therefore ?=21 \times 2 \times 3=126$
30. (b) Let the present age of father and son be $17 x$ and $7 x$ respectively.
Then, $\frac{17 \mathrm{x}-6}{7 \mathrm{x}-6}=\frac{3}{1}$
$\Rightarrow 21 \mathrm{x}-17 \mathrm{x}=18-6$
$\Rightarrow \mathrm{x}=12 \div 4=3$
\therefore Father's present age
$=17 \times 3=51$ years.
31. (c) Required amount
$=\frac{2580}{(9-4)} \times(3+10)$
$=\frac{2580 \times 13}{5}=₹ 6708$
32. (d) Smallest angle
$=(13+12) \times \frac{20}{100}=5$
$\therefore \quad$ Ratio of angles $=13: 12: 5$
$\therefore \quad$ Sum of smallest and second largest angles

$$
\begin{aligned}
& =\frac{180 \times(12+5)}{(13+12+5)} \\
& =\frac{180 \times 17}{30}=102^{\circ}
\end{aligned}
$$

33. (a) Required number of gold coins
$=\frac{\{950-(25+15+30)\} \times 73}{(20+73+83)}+15$
$=365+15$
$=380$
34. (b) Let the present ages be 4 x and 5 x respectively.

Then, $\frac{4 x+6}{5 x+6}=\frac{6}{7}$
$\Rightarrow \quad 30 x-28 x=42-36$
$\Rightarrow \quad \mathrm{x}=\frac{6}{2}=3$
$\therefore \quad$ Difference in age
$=5 \mathrm{x}-4 \mathrm{x}$
35. (b) Let the fourth proportional to $5,8,15$ be x.

Then, $5: 8:: 15: x \Rightarrow 5 x=(8 \times 15) \Rightarrow x=$ $\frac{(8 \times 15)}{5}=24$.
36. (b) $(x \times 5)=(0.75 \times 8) \Rightarrow x=\frac{6}{5}=1.20$.
37. (d) Given the ratio $=\frac{1}{2}: \frac{2}{3}: \frac{3}{4}=6: 8: 9$.
$\therefore \quad$ 1st part $=₹\left(782 \times \frac{6}{23}\right)=₹ 204$.
38. (d) Number of nurses $=\frac{7}{12} \times 240=140$

EXERCISE 2

1. (e) Suppose the salaries of A, B and C were 300 k , 500 k and 700 k respectively.
After increment salary of
$\mathrm{A}=300 \mathrm{k}+50 \%$ of $300 \mathrm{k}=450 \mathrm{k}$
$B=500 \mathrm{k}+60 \%$ of $500 \mathrm{k}=800 \mathrm{k}$
$\mathrm{C}=700 \mathrm{k}+50 \%$ of $700 \mathrm{k}=1050 \mathrm{k}$
Hence, new ratio of the respective salaries of A,
B and $\mathrm{C}=450 \mathrm{k}: 800 \mathrm{k}: 1050 \mathrm{k}=9: 16: 21$
2. (b) Let, weight of sugar costing ₹ 5.75 per kg $=x \mathrm{~kg}$
$\mathrm{x} \times 5.75+75 \times 4.50=5.50 \times(\mathrm{x}+75)$
$\Rightarrow 5.75 \mathrm{x}+337.50=5.50 \mathrm{x}+412.50$
$\Rightarrow 0.25 \mathrm{x}=75$
$\therefore \quad x=300 \mathrm{~kg}$
3. (c) Ratio of the amount is
$\frac{P\left(1+\frac{r}{100}\right)^{2}}{\left(P+\frac{P r}{100}\right)}=\frac{6}{5} \Rightarrow\left(1+\frac{r}{100}\right)=\frac{6}{5} \Rightarrow r=20 \%$
4. (d) All the given options are wrong.

Let the passengers in A.C. Sleeper Class, 1st Class and Sleeper Class be $\mathrm{x}, 2 \mathrm{x}$ and 3 x respectively and the fares in these classes be $5 y, 4 y$ and $2 y$ respectively.
Hence the incomes from these classes are $5 x y$, $8 x y, 6 x y$ respectively.

Required income $=\frac{5}{19} \quad 54000=₹ 14210$
5. (d) The number of police involved $\quad \begin{array}{llll}\frac{3}{5} & 135 & 81\end{array}$

Required number of supporters $=81 \quad 9=729$
6. (b) Let actual distance be x km . Then,
$\frac{3}{4}: 1:: 60: x$
$\Rightarrow \frac{3}{4} \mathrm{x}=60 \Rightarrow \mathrm{x}=\frac{240}{3}=80 \mathrm{~km}$
7. (c) Number of girls $=\frac{5}{2+5} \times 350=250$
8. (b) 18 carat gold
$=\frac{3}{4}$ pure gold $=\frac{3}{4} \times 24=18$ carat gold
20 carat gold
$=\frac{5}{6}$ pure gold $=\frac{5}{6} \times 24=20$ carot gold
Required ratio $=18: 20=9: 10$
9. (b) Let the no. of one rupee, 50 paise and 25 paise coins be $2 \mathrm{x}, 3 \mathrm{x}$ and 4 x respectively.
According to question,
$2 x+\frac{3 x}{2}+\frac{4 x}{4}=216 \Rightarrow \frac{8 x+6 x+4 x}{4}=216$
$\therefore \mathrm{x}=48$
$\therefore \quad$ Number of 50 paise coins $=48 \times 3=144$
10. (d) Let $A=2 x, B=3 x$ and $C=4 x$. Then,
$\frac{\mathrm{A}}{\mathrm{B}}=\frac{2 \mathrm{x}}{3 \mathrm{x}}=\frac{2}{3}, \frac{\mathrm{~B}}{\mathrm{C}}=\frac{3 \mathrm{x}}{4 \mathrm{x}}=\frac{3}{4}$ and $\frac{\mathrm{C}}{\mathrm{A}}=\frac{4 \mathrm{x}}{2 \mathrm{x}}=\frac{2}{1}$
$\Rightarrow \frac{\mathrm{A}}{\mathrm{B}}: \frac{\mathrm{B}}{\mathrm{C}}: \frac{\mathrm{C}}{\mathrm{A}}=\frac{2}{3}: \frac{3}{4}: \frac{2}{1}=8: 9: 24$.
11. (c) Let the shares of A, B, C and D be ₹ $5 x$, ₹ $2 x$, ₹ 4 and ₹ 3 x respectively.
Then, $4 \mathrm{x}-3 \mathrm{x}=1000 \Rightarrow \mathrm{x}=1000$
\therefore B's Share $=₹ 2 \mathrm{x}=₹ 2000$
12. (c) Let $\mathrm{A}=2 \mathrm{k}, \mathrm{B}=3 \mathrm{k}$ and $\mathrm{C}=5 \mathrm{k}$.

A's new salary $=\frac{115}{100}$ of $2 \mathrm{k}=\left(\frac{115}{100} \times 2 \mathrm{k}\right)=\frac{23}{10} \mathrm{k}$
B's new salary $=\frac{110}{100}$ of $3 \mathrm{k}=\left(\frac{110}{100} \times 3 \mathrm{k}\right)=\frac{33}{10} \mathrm{k}$
C's new salary $=\frac{120}{100}$ of $5 \mathrm{k}=\left(\frac{120}{100} \times 5 \mathrm{k}\right)=6 \mathrm{k}$
\therefore New ratio $=\frac{23 \mathrm{k}}{10}: \frac{33 \mathrm{k}}{10}: 6 \mathrm{k}=23: 33: 60$.
13. (d) Let number of passengers $=x, 2 x, 7 x$
and Rate $=5 \mathrm{y}, 4 \mathrm{y}, 2 \mathrm{y}$
Now, since income $=$ Rate \times Number of passengers
\therefore Income of passengers $=5 x y, 8 x y, 14 \mathrm{xy}$
\therefore Income in ratio $=5: 8: 14$
\therefore Income from A.C. sleeper class
$=\frac{5}{5+8+14} \times 54,000$
$=₹ 10,000$
14. (a) Let the ratio be $x:(x+40)$. Then,
$\frac{\mathrm{x}}{(\mathrm{x}+40)}=\frac{2}{7} \Rightarrow 7 \mathrm{x}=2 \mathrm{x}+80 \Rightarrow \mathrm{x}=16$.
\therefore Required ratio $=16: 56$.
15. (c) Total age of 3 boys $=(25 \times 3)$ years $=75$ years

Ratio of their ages $=3: 5: 7$.
Age of the youngest boy $=\left(75 \times \frac{3}{15}\right)$ years $=15$ years
16. (c) Let enlarged breadth be x inches. Then,
$\frac{5}{2}: 4:: \frac{15}{8}: x$
$\Rightarrow \frac{5}{2} \mathrm{x}=4 \times \frac{15}{8} \Rightarrow \mathrm{x}=3$ inches
17. (c) Originally, let the number of boys and girls in the college be 7 x and 8 x respectively.
Their increased number is (120% of 7 x) and (110% of 8 x)
i.e. $\left(\frac{120}{100} \times 7 \mathrm{x}\right)$ and $\left(\frac{110}{100} \times 8 \mathrm{x}\right)$
i.e. $\frac{42 \mathrm{x}}{5}$ and $\frac{44 \mathrm{x}}{5}$
\therefore Required ratio $=\frac{42 \mathrm{x}}{5}: \frac{44 \mathrm{x}}{5}=21: 22$.
18. (c) Quantity of milk $=45 \frac{4}{5}=36$ litres

Quantity of water $=45 \times \frac{1}{5}=9$ litres
Let x litres of water be added.
Then, $\frac{36}{9+\mathrm{x}}=\frac{3}{2}$
$\Rightarrow 72=27+3 x$ or $3 x=45$
or $x=15$ litres
19. (e) Let number be divided in ratio $\mathrm{x}: \mathrm{y}$. Then

First part $\frac{x}{x y}$, second part $\frac{y}{x y}$

Now, $\frac{1}{4} \frac{x}{x \quad y} \quad \frac{1}{3} \frac{y}{x \quad y} \quad \frac{1}{2}$
20. (c) For 9 kg zinc, mixture melted $=(9+11) \mathrm{kg}$. For 28.8 kg zinc, mixture melted
$=\left(\frac{20}{9} \times 28.8\right) \mathrm{kg}=64 \mathrm{~kg}$.
21. (b) Let there be x men at the beginning.

Less men, More days (Indirect Proportion)
Men : x: x-6
Days: 15 : 9
$\therefore 15: 9:: x:(x-6) \Rightarrow 15(x-6)=9 x$
$\Rightarrow 6 \mathrm{x}=90 \Rightarrow \mathrm{x}=15$.
22. (b) Let A's share $=₹ 2 x$, B's share $=₹ 3 x$ and C's
share $=₹ 7 \mathrm{x}$
Now, 7x (2x 3x) $1500 \quad x \quad 750$
\therefore A's share $=₹ 2 x=₹ 1500$
23. (a) $\frac{\mathrm{V}}{\mathrm{C}}=\frac{2}{3}$ and $\frac{\mathrm{V}+4}{\mathrm{C}}=\frac{3}{4}$
$\therefore \quad \mathrm{C}=\frac{3 \mathrm{~V}}{2} \Rightarrow \frac{\mathrm{~V}+4}{3 \mathrm{~V} / 2}=\frac{3}{4} \quad[$ From (1)]
where V denoted for vanilla and C for chocolate.
$\Rightarrow 4 \mathrm{~V}+16=\frac{9 \mathrm{~V}}{2} \Rightarrow 8 \mathrm{~V}+32=9 \mathrm{~V} \Rightarrow \mathrm{~V}=32$
24. (d) Let the required price be ₹ x.

Then, Less toys, Less cost (Direct Proportion).
$\therefore 6: 5:: 264.37: x \Rightarrow 6 x=(5 \times 264.37)$
$\Rightarrow \mathrm{x}=\frac{(5 \times 264.37)}{6} \Rightarrow \mathrm{x}=220.308$.
\therefore Approximate price of 5 toys $=₹ 220$.
25. (a) Let the required men be x.

More hours, less men (Indirect proportion)
More days, less men (Indirect proportion)
$\left.\begin{array}{l}\text { Hours } 5: 8 \\ \text { Days } 8: 6\end{array}\right\}:: x: 18$
$\therefore 5 \times 8 \times 18=8 \times 6 \times \mathrm{x}$
$\Rightarrow \mathrm{x}=\frac{5 \times 8 \times 18}{8 \times 6}=15$
26. (d) Let the required number of mats be x.

More weavers, More mats
(Direct Proportion)

More days, More mats
(Direct Proportion)
$\left.\begin{array}{ll}\text { Weavers } & 4: 8 \\ \text { Days } & 4: 8\end{array}\right\}:: 4: \mathrm{x}$
$\therefore 4 \times 4 \times \mathrm{x}=8 \times 8 \times 4 \Rightarrow \mathrm{x}=\frac{8 \times 8 \times 4}{4 \times 4}=16$.
27. (a) Let the required days be x.

More men, less days (Indirect proportion)
More size, more days (Direct Proportion)
Men 2012
size $100 \times 3 \times 0.5 \quad 60 \times 4 \times 0.25\}:: 25: \mathrm{x}$
$\therefore 20 \times 100 \times 3 \times 0.5 \times \mathrm{x}$
$=12 \times 60 \times 4 \times 0.25 \times 25$
$\Rightarrow \mathrm{x}=6$ days
28. (c) Let the required number of days be x.

Less cows, More days (Indirect Proportion)
Less bags, Less days (Direct Proportion)
$\left.\begin{array}{ll}\text { Cows } & 1: 40 \\ \text { Bags } & 40: 1\end{array}\right\}:: 40: \mathrm{x}$
$\therefore 1 \times 40 \times \mathrm{x}=40 \times 1 \times 40 \Rightarrow \mathrm{x}=40$.
29. (b) There is a meal for 200 children. 150 children have taken the meal.
Remaining meal is to be catered to 50 children.
Now, 200 children $\equiv 120$ men
$\therefore 50$ children $\equiv\left(\frac{120}{200} \times 50\right)$ men $=30$ men.
30. (b) Let the required number of days be x.

Less persons, More days
(Indirect Proportion)
More working hrs per day, Less days
(Indirect Proportion)
$\left.\begin{array}{lc}\text { Persons } & 30: 39 \\ \text { Working hrs / day } & 6: 5\end{array}\right\}:: 12: \mathrm{x}$
$\therefore 30 \times 6 \times \mathrm{x}=39 \times 5 \times 12 \Rightarrow \mathrm{x}=\frac{39 \times 5 \times 12}{30 \times 6} \Rightarrow \mathrm{x}=13$.
31. (b) Initially, let there be x men having food for y days.

After 15 days, x men had food for $(y-15)$ days.
Also, $\left(x-\frac{x}{4}\right)$ men had food for y days.
$\therefore \frac{3 x}{4}: x::(y-15): y$
$\Rightarrow \frac{3 x}{4} \times y=x(y-15)$
$\Rightarrow 3 y=4 y-60 \Rightarrow y=60$ days
32. (c) In 2 days, 5 men set tiles $=180 \times 2 \times 5=1800$ tiles
\therefore Area of floor
$=$ Number of tiles \times Area of each tile
$=1800 \times 2 \times \frac{3}{4}$
$=2700 \mathrm{ft}^{2}$
33. (a) 3000 men taking 900 gms per head have provision for

$$
25-11=14 \text { days }
$$

Less ratio per head, more men
(Indirect Proportion)
Less days, more men (Indirect Proportion)
$\left.\begin{array}{ll}\text { Ratio } 840: 900 \\ \text { Days } & 10: 14\end{array}\right\}:: 3000: \mathrm{x}$
$\therefore 840 \times 10 \times \mathrm{x}=900 \times 14 \times 3000$
$\Rightarrow \mathrm{x}=4500$
\therefore strength of reinforcement $=4500-3000=1500$ men
34. (b) Let the required number of days be x.

8 men $\equiv 17$ boys $\Rightarrow 4$ men $\equiv \frac{17}{2}$ boys
$\therefore 4$ men and 24 boys $\equiv\left(\frac{17}{2}+24\right)$ boys $=\frac{65}{2}$ boys
Now, More boys, less days
(Indirect Proportion)
$\therefore \frac{65}{2}: 17:: 26: \mathrm{x}$
$\Rightarrow \frac{65}{2} \times x=17 \times 26$
$\Rightarrow \mathrm{x}=\frac{17 \times 26 \times 2}{65}$ days
But work $\longrightarrow 50 \times 0.9$ times
$\therefore \quad$ Required days
$=50 \times 0.9 \times \frac{17 \times 26 \times 2}{65}=612$ days
35. (b) Let the required number of hours be x.

Speeds of working of first and second type of men are $\frac{1}{2}$ and $\frac{1}{3}$.

More work, More time (Direct Proportion)
Less speed, More time(Indirect Proportion)
$\left.\begin{array}{ll}\text { Work } & 1: 2 \\ \text { Speed } & \frac{1}{3}: \frac{1}{2}\end{array}\right\}:: 25: \mathrm{x}$
$\therefore\left(1 \times \frac{1}{3} \times \mathrm{x}\right)=\left(2 \times \frac{1}{2} \times 25\right) \Rightarrow \mathrm{x}=75$.

EXERCISE 3

1. (d) Let, the number of passengers travelling by I and II class be x and 50 x
and, fares of I and II class be $3 y$ and y.
$\therefore \quad$ Revenue is $\mathrm{x} \times 3 \mathrm{y}+50 \mathrm{x} \times \mathrm{y}=₹ 1325$
$53 x y=1325$
$\Rightarrow x y=25$
\therefore Amount collected from the II class passengers $=50 x y=50 \times 25=₹ 1250$.
2. (b) Weight of dry grapes without water $=250 \times \frac{90}{100}=225 \mathrm{~kg}$
Let weight of fresh grapes be x kg .
According to question,
$\mathrm{x} \times \frac{20}{100}=225 \Rightarrow \mathrm{x}=\frac{225 \times 100}{20}=1125 \mathrm{~kg}$
3. (c) Let the questions with right answer be x .

Questions with wrong answer $=90-\mathrm{x}$
Marks obtained $=387$
$5 \mathrm{x}-2(90-\mathrm{x})=387$
$\Rightarrow 5 \mathrm{x}-180+2 \mathrm{x}=387$
$\Rightarrow 7 \mathrm{x}=387+180=567 \Rightarrow \mathrm{x}=81$
\therefore Questions with wrong answers $=90-81=9$
4. (d) Fare after reduction.

1st $2 n d \quad 3 r d$
$8-\frac{8}{6} \quad 6-\frac{6}{12}$

\Rightarrow	$\frac{20}{3}$	$\frac{11}{2}$
\Rightarrow	40	33
	Ratio of revenue	18

lst 2nd 3rd
$9 \times 40 \quad 12 \times 33 \quad 26 \times 18$
Ratio of revenue of all three classes $=10: 11: 13$
\therefore Collection for 1 st class $=\frac{1088 \times 10}{34}=$ Rs 320
5. (b) $\mathrm{A}: \mathrm{B}=2: 3=2 \times 5: 3 \times 5=10: 15$
and $B: C=5: 8=5 \times 3: 8 \times 3=15: 24$
Therefore, A : B : C = 10: 15:24
Let the numbers be $10 \mathrm{x}, 15 \mathrm{x}$ and 24 x .
Then, $10 \mathrm{x}+15 \mathrm{x}+24 \mathrm{x}=98$
or $49 x=98$ or $x=2$
\Rightarrow Second number $=15 x=15 \times 2=30$
6. (c) Let number of ladies $=x$
and, number of gents $=2 x$
Now, $\frac{x-2}{2 x-2}=\frac{1}{3} \Rightarrow 3 x-6=2 x-2$

$$
\Rightarrow x=4
$$

\therefore Total number of people originally present

$$
=4+8=12
$$

7. (b) Let Son's share $=₹$ S;

Daughter's share $=₹$ D;
and Wife's share $=₹$ W.
Also, $\mathrm{S}: \mathrm{W}=\mathrm{W}: \mathrm{D}=3: 1$
$\therefore \mathrm{S}: \mathrm{W}: \mathrm{D}=9: 3: 1$
then $S=9 x, D=x$
and $9 x-x=10,000 \Rightarrow x=₹ 1250$
\therefore Total worth of the property
$=(9+3+1) \mathrm{x}=13 \mathrm{x}$
$=13 \times 1250=₹ 16,250$
8. (a) Let number of each type of coin $=x$. Then,
$1 \times x+.50 \times x+.25 x=35$
$\Rightarrow 1.75 \mathrm{x}=35 \Rightarrow \mathrm{x}=20$ coins
9. (b) Let S denotes the shirts and T denotes the ties.

We have, $43 \mathrm{~S}+21 \mathrm{~T}=535$
By hit and trial, $\mathrm{S}=10, \mathrm{~T}=5$
$\Rightarrow 43 \times 10+21 \times 5=535$
\therefore Ratio of shirts to ties $=10: 5=2: 1$
10. (a) Let A's share be ₹ x,

B's share be ₹ y. Then,
C's share $=₹[671-(x+y)]$
Now, $x+3: y+7: 671-(x+y)+9=1: 2: 3$
$\Rightarrow x+3: y+7: 680-(x+y)=1: 2: 3$
$\therefore \mathrm{x}+3=\frac{1}{6} \times 690=115$
$\Rightarrow \mathrm{x}=₹ 112$
Also $y+7=\frac{2}{6} \times 690=230$
$\Rightarrow \mathrm{y}=\mathrm{Rs} 223$
\therefore C's share $=\operatorname{Rs}[671-(112+223)]=\operatorname{Rs} 336$
11. (d) Let the income of two persons be ₹ $4 x$ and ₹ $5 x$
and their expenses be ₹ 7 y and ₹ 9 y .
Therefore, $4 x-7 y=50$
and $5 x-9 y=50$
From (i) and (ii), we get
$x=100$ and $y=50$
The income of the two persons are $₹ 400$ and $₹ 500$, respectively.
12. (b) Let income of $A=₹ 3 x$, income of $B=₹ 2 x$ and expenditure of $A=₹ 5 y$, expenditure of $\mathrm{B}=₹ 3 \mathrm{y}$
Now, saving $=$ income - expenditure
$\therefore 3 x-5 y=2 x-3 y=200$
$\Rightarrow x=2 y$ and $y=200$
$\therefore \mathrm{x}=400$
\therefore A's income $=₹ 1200$
13. (b) Let A's share $=\operatorname{Rs} \frac{15}{4} x$, B's share $=₹ 4 x$ and

C's share $=₹ 5.5 x$
Given $\frac{15}{4} \mathrm{x} \quad 30 \quad \mathrm{x} \quad 8$
\therefore Total amount $=30+32+44=₹ 106$
14. (c) Gold in $\mathrm{C}=\left(\frac{7}{9}+\frac{7}{18}\right)$ units $=\frac{7}{6}$ units.

Copper in $\mathrm{C}=\left(\frac{2}{9}+\frac{11}{18}\right)$ units $=\frac{5}{6}$ units.
\therefore Gold : Copper $=\frac{7}{6}: \frac{5}{6}=7: 5$.
15. (c) Let the three containers contain $3 x, 4 x$ and $5 x$ litres of mixtures, respectively.
Milk in 1st mix. $=\left(3 x \times \frac{4}{5}\right)$ litres $=\frac{12 \mathrm{x}}{5}$ litres.
Water in 1st mix. $=\left(3 x-\frac{12 x}{5}\right)$ litres $=\frac{3 x}{5}$ litres.
Milk in 2nd mix. $=\left(4 x \times \frac{3}{4}\right)$ litres $=3 x$ litres.
Water in 2nd mix. $=(4 x-3 x)$ litres $=x$ litres.
Milk in 3rd mix. $=\left(5 x \times \frac{5}{7}\right)$ litres $=\frac{25 x}{7}$ litres.
Water in 3rd mix. $=\left(5 x-\frac{25 x}{7}\right)$ litres $=\frac{10 x}{7}$ litres.
Total milk in final mix.
$=\left(\frac{12 \mathrm{x}}{5}+3 \mathrm{x}+\frac{25 \mathrm{x}}{7}\right)$ litres $=\frac{314 \mathrm{x}}{35}$ litres.
Total water in final mix.
$=\left(\frac{3 x}{5}+x+\frac{10 x}{7}\right)$ litres $=\frac{106 x}{35}$ litres.

Required ratio of milk and water
$=\frac{314 \mathrm{x}}{35}: \frac{106 \mathrm{x}}{35}=157: 53$.
16. (b) Let the fixed amount be ₹ x and the cost of each unit be $₹ \mathrm{y}$. Then,
$540 y+x=1800$
and $620 \mathrm{y}+\mathrm{x}=2040$
On subtracting (i) from (ii), we get $80 y=240 \Rightarrow$ $y=3$.
Putting $y=3$ in (i), we get :
$\mathrm{x}=(1800-1620)=180$.
$\therefore \quad$ Fixed charges $=₹ 180$, Charge per unit $=₹ 3$.
Total charges for consuming 500 units
$=₹(180+500 \times 3)=₹ 1680$.
17. (b) Given $\mathrm{A}+\mathrm{B}+\mathrm{C}=4898$

Also $\mathrm{B}=\frac{120}{100} \mathrm{~A}$ and $\mathrm{B}=\frac{125}{100} \mathrm{C}$
$\therefore \mathrm{By}$ (i), $\frac{100}{120} B+B+\frac{100}{125} B=4898$
$\Rightarrow \mathrm{B}=\frac{4898 \times 30}{79}=\mathrm{Rs} 1,860$
18. (c) Since, $\mathrm{A}: \mathrm{B}=2: 3$ and $\mathrm{B}: \mathrm{C}=6: 5$
$\therefore \mathrm{A}: \mathrm{B}: \mathrm{C}=4: 6: 5$
Then, A's share $=\frac{4}{4+6+5} \times 750=$ Rs 200
19. (a) Let the basic salary of A be $₹ x$ and that of B be ₹ y.

Now, $x \times \frac{65}{100}=y \times \frac{80}{100} \Rightarrow x: y=16: 13$
20. (a) Let the number of male and female participants be $3 x$ and x respectively.
Therefore total no. of participants are $4 x$.
During the tea break, the number of male participants are

$$
\begin{equation*}
(4 x-16) \times \frac{3}{4}=3 x-12 \tag{i}
\end{equation*}
$$

and the number of female participants are

$$
\begin{equation*}
(4 x-16) \times \frac{1}{4}+6=x+2 \tag{ii}
\end{equation*}
$$

Now, $\frac{3 x-12}{x+2}=\frac{2}{1}$

$$
\Rightarrow 3 \mathrm{x}-12=2 \mathrm{x}+4 \Rightarrow \mathrm{x}=16
$$

Therefore, the total number of participants are

$$
=4 \times 16=64
$$

Number of females $=\frac{3}{5} \times 25=15$
Amount distributed among males and females
$=275 \times 80 \%=₹ 220$
Let the wage paid to a male be ₹ 5 x and that to a female be ₹ $4 x$. Therefore,
$10 \times 5 \mathrm{x}+15 \times 4 \mathrm{x}=220$
$\Rightarrow 50 \mathrm{x}+60 \mathrm{x}=220 \Rightarrow \mathrm{x}=2$
Wage received by a feamale labourer
$=2 \times 4=₹ 8$
22. (c) Let x pairs of brown socks were ordered.

Let P be the price of a brown pair.
Therefore, price of the black pair of sock $=2 \mathrm{P}$
Now, $4 \mathrm{P}+2 \mathrm{Px}=1.5(\mathrm{Px}+8 \mathrm{P})$
$\Rightarrow 4 \mathrm{P}+2 \mathrm{Px}=\frac{3}{2}(\mathrm{Px}+8 \mathrm{P})$
$\Rightarrow 8 \mathrm{P}+4 \mathrm{Px}=3 \mathrm{Px}+24 \mathrm{P}$
$\Rightarrow \mathrm{Px}=16 \mathrm{P} \Rightarrow \mathrm{x}=16$
$\therefore \quad$ Required ratio $=\frac{4}{16}=1: 4$
23. (b) Let the required length be x metres.

More breadth, Less length (Indirect Proportion)
More depth, Less length
(Indirect Proportion)
More days, More length
(Direct Proportion)
$\left.\begin{array}{ll}\text { Breadth } & 20: 50 \\ \text { Depth } & 15: 10 \\ \text { Days } & 10: 30\end{array}\right\}:: 100: x$
$\therefore 20 \times 15 \times 10 \times x=50 \times 10 \times 30 \times 100$
$\Rightarrow \mathrm{x}=\frac{50 \times 10 \times 30 \times 100}{20 \times 15 \times 10} \Rightarrow \mathrm{x}=500$.
24. (a) $(100 \times 35+200 \times 5)$ men can finish the work in 1 day.
i.e., 4500 men can finish the work in 1 day
$\therefore 100$ men can finish the work in 45 days
\therefore The work would be 5 days behind the schedule.
25. (d) Remaining work $=1-\frac{2}{5}=\frac{3}{5}$

Remaining time $=56-30=26$ days
More work, more men (Direct Proportion)
Less days, more men (Indirect Proportion)
More hours, Less men (Indirect Proportion)
21. (b) Number of males $=\frac{2}{5} \times 25=10$

Work $\frac{2}{5}: \frac{3}{5}$
Days 26:30 $\}:: 104: x$
Hrs 9:8
$\therefore \frac{2}{5} \times 26 \times 9 \times \mathrm{x}=\frac{3}{5} \times 30 \times 8 \times 104$
$\Rightarrow \mathrm{x}=160$
\therefore Additional men to be employed
$=160-104=56 \mathrm{men}$
26. (c) After 5 days : 250 students had provision for 30 days.
Now, let 275 students had provision for x days.
Then, more persons, less days
(Indirect Proportion)
$\therefore 275: 250:: 30: \mathrm{x}$
$\Rightarrow 275 \times \mathrm{x}=250 \times 30 \Rightarrow \mathrm{x}=\frac{300}{11}$ days
Again, after 10 days : 275 students had provision
for $\left(\frac{300}{11}-10\right)=\frac{190}{11}$ days.
Let $(275-25)=250$ students had provision for y days
Less persons, more days
(Indirect Proportion)
$\therefore 250: 275:: \frac{190}{11}: y$
$\Rightarrow 250 \times \mathrm{y}=275 \times \frac{190}{11} \Rightarrow \mathrm{y}=19$ days
27. (b) More machines, less hours (Indirect Proportion)

Less days, more hours (Indirect Proportion)
More amount of coal, more hours
(D i rect
Proportion)
Less efficiency, more hours
(Indirect Proportion)
$\left.\begin{array}{l}\left.\begin{array}{lc}\text { Machine } & 3: 2 \\ \text { Days } & 6: 8 \\ \text { Amount of coal } 9,000: 12,000\end{array}\right\}:: 12: x \\ \therefore \text { Efficiency } 0.8: 0.9\end{array}\right\} \begin{aligned} & \Rightarrow \quad \begin{array}{l}3 \times 6 \times 9,000 \times 0.8 \times \mathrm{x} \\ =2 \times 8 \times 12,000 \times 0.9 \times 12 \\ \Rightarrow \mathrm{x}=16 \mathrm{hrs}\end{array}\end{aligned}$
28. (a) Let 4 men left the work after x days.

Then, after x days,
10 men should completed work in $(40-x)$ days
but, 6 men completed work in $(50-x)$ days.
$\therefore 10: 6::(50-\mathrm{x}):(40-\mathrm{x})$
$\Rightarrow 6(50-x)=10(40-x)$
$\Rightarrow 4 \mathrm{x}=400-300 \Rightarrow \mathrm{x}=\frac{100}{4}=25$ days

Alternate :

Since, 10 men completed the work in 40 days.
$\therefore 1$ man completed the work in 400 days.
\therefore Work of One day of a man $=\frac{1}{400}$ th part.
Suppose 4 men left the work after x days.
Then, work done by 10 men in x days + work done by

$$
\begin{aligned}
& 6 \text { men in }(50-x) \text { days }=1 \\
\Rightarrow & \frac{1}{400} \times 10 \times x+\frac{1}{400} \times 6 \times(50-x)=1 \\
\Rightarrow & 10 x+300-6 x=400 \\
\Rightarrow & 4 x=100 \Rightarrow x=25 \text { days }
\end{aligned}
$$

29. (b) Let M denotes man and B denotes boy.
$(M+B)$'s 1 day's work $=\frac{1}{40}$
i.e. $\frac{1}{\mathrm{M}} \quad \frac{1}{\mathrm{~B}} \quad \frac{1}{40}$

Ratio of their skill $=\frac{8}{5}$ i.e. $\frac{1}{M} / \frac{1}{B} \quad \frac{8}{5}$
Let efficiency of a man of 1 days work $=x$
i.e. $\frac{1}{M} \quad x$

Now, $\frac{1}{\mathrm{M}} \quad \frac{8}{5} \quad \frac{1}{\mathrm{~B}} \quad \frac{1}{\mathrm{~B}} \quad \frac{5 \mathrm{x}}{8}$

Now, $\frac{13 x}{8} \quad \frac{1}{5} \quad x \quad \frac{1}{65} \Rightarrow M=65$ and
$\frac{1}{\mathrm{~B}} \quad \frac{1}{104}$

